期刊文献+

带理性运动极限的序列二次规划算法

Sequential Quadratic Programming With Rational Move Limits
下载PDF
导出
摘要 序列二次规划(SQP)算法的基本思想是通过一系列的二次规划(QP)子问题来逐次逼近原问题.为了给定QP子问题一个更加合适的求解空间(超多面体),将理性运动极限应用于SQP算法,提出了一种带理性运动极限的序列二次规划算法,从而以较为理性的方式求解搜索方向,而且也有利于确定搜索步长,数值算例表明这一方法是可行且有效的。 The basic idea of the sequential quadratic programming (SQP) algorithm is to approximate and initial model with a sequence of quadratic programming (QP) sub-problems. To choose rational move limits box (super-polyhedron) for QP sub-problems, a new SQP algorithm, SQPRML is presented. Hence, the problem of search direction is solved in a more rational method, and it facilitates to obtain search step size. Numerical examples are presented which show that the algorithm is feasible and efficient.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2008年第11期1121-1126,共6页 Journal of Beijing University of Technology
基金 汽车车身先进设计制造国家重点实验室开放基金(30715002) 高校博士点基金(20060005010)
关键词 非线性约束优化 SQP算法 Hesse阵 理性运动极限 nonlinear constrained optimization SQP algorithm Hesse matrix rational move limits
  • 相关文献

参考文献8

  • 1WUJEK B A, RENAUD J E. New adaptive move-limit management strategy for approximate optimization, parts 1 and 2 [J]. AIAAJ, 1998, 36: 1911-1934.
  • 2LAMBERTI L, PAPPALETTERE C. Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimization problems[J]. Comput Struct, 2000, 76: 713-728.
  • 3LAMBERTI L, PAPPALETTERE C. Move limits definition in structural optimization with sequential linear programming. part Ⅰ: optimization algorithm[J]. Comput Struct, 2003, 81: 197-213.
  • 4LAMBERTI L, PAPPALETTERE C. Move limits definition in structural optimization with sequential linear programming. part Ⅱ: numerical examples[J]. Comput Struct, 2003, 81: 215-238.
  • 5杨冰.实用最优化方法及计算机程序[M].哈尔滨:哈尔滨船舶工程学院出版社,1995:234-270.
  • 6HAN S P. A globally convergent method for nonlinear programming[J]. Journal of Optimization Theory and its Applications, 1977, 22: 297-309.
  • 7CHARALAMBOUS C. Acceleration of the least p-th algorithm for minimax optimization with engineering applications[J]. Math Programming, 1979, 17: 270-297.
  • 8CHARALAMBOUS C. Nonlinear least p-th optimization and nonlinear programming[J ]. Math Programming, 1977, 12:195-225.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部