期刊文献+

基于SOM的高维化工过程数据粗差判别 被引量:1

Outlier Detection of High Dimensional Chemical Engineering Process Data Based on Self-Organizing Map
下载PDF
导出
摘要 针对石油化工生产过程样本数据呈高维的特征,提出了基于自组织映射(Self-Organizing Map,SOM)网络的粗差判别方法,并实际应用于初馏塔生产过程。首先应用SOM网络对初馏塔生产过程数据进行保留拓扑结构的降维映射,然后通过对其映射平面神经元间距离的可视化分析,实现数据粗差判别。研究结果表明用SOM网络来发现高维复杂生产过程数据中的粗差具有很好的可视化效果及应用前景。 For the high dimensional chemical engineering processing data, an outlier detection method based on self organizing map (SOM)networks and its visualization methods was proposed. Practically, it was applied for the observed data of preflash tower and the satisfactory result was obtained. Firstly, SOM was applied to obtain the topology preserving plane for the high dimensional data. Then, based on the mapping plane and its visualization methods, the outliers were visualized clearly and easily. The results show that the proposed method does not need complex calculation, and the outliers in high dimensional data are effectively detected and eliminated.
出处 《石油化工高等学校学报》 EI CAS 2008年第4期84-86,90,共4页 Journal of Petrochemical Universities
基金 国家自然科学基金(20506003 20776042) 国家863项目(2007AA04Z164 2007AA04Z171) 教育部科学技术研究重点项目(106073) 国家杰出青年科学基金(60625302)
关键词 SOM网络 粗差判别 可视化 初馏塔 SOM networks Outlier detection Visualization Preflash tower
  • 相关文献

参考文献8

  • 1颜学峰,包俊杰,张兵,钱锋.节点与测量数据组合检测的数据协调及应用[J].化工学报,2007,58(11):2828-2833. 被引量:2
  • 2Chris Aldrich, Jannie S J van Deventer. Comparison of different artificial neural nets for the detection and location of gross errors in process systems[J]. Industrial and engineering chemistry research, 1995, 34 (1) : 216-- 224.
  • 3王磊,黄道.基于改进的自组织映射网络的化工过程故障分类辨识[J].华东理工大学学报(自然科学版),2006,32(9):1109-1112. 被引量:2
  • 4Munoz Alberto, Muruzabal Jorge. Self-- organizing maps for outlier detection[J]. Neurocomputing, 1998, 18 (1) : 33 -60.
  • 5Sammon J W. A nonlinear mapping for data structure analysis[J]. IEEE trans, comput. , 1969, 18(5): 401--409.
  • 6Ultsch A. Knowledge extraction from self--organizing neural networks[M]//Information & classification. Berlin: springer verlag, 1993, 301 -- 306.
  • 7Kohonen T, Hynninen J, Kangas J, et al. SOM_PAK the self--organizing map program package[EB/OL]. Helsinki university of technology, laboratory of computer and information science : Espoo, Finland, 1995 [2006 -- 12 -- 10]. http :// www. cis. hut. fi/research software.
  • 8Aldrich C, Jannie S J Van Deventer. Identification of gross error in material balance measurements by means of neural nets[J]. Chemical engineering science, 1994, 49(9) : 1357-- 1368.

二级参考文献22

  • 1Rengaswamy R,Venkatasubramanian V.A syntactic pattern recognition approach for process monitoring and fault diagnosis[J].Eng App Artificial Intelligence,1995,8(1):35-51.
  • 2Kohonen T.Self-Organizing Maps[M].New York:Springer-Verlag,1987.
  • 3Jin H,Shum W H.Leung K S,et al.Expanding self-organizing map for data visualization and cluster analysis[J].Information Sciences,2004,(163):157-173.
  • 4Vapnik V N.The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1998.
  • 5Kennedy J,Eberhart R.Particle swarm optimization[A].IEEE Int'l Conf on Neural Networks[C].Perth,Austrialia:[s.n.],1995.1942-1948.
  • 6Ioan Cristian Trelea.The particle swarm optimization algorithm:Convergence analysis and parameter selection[J].Information Processing Letters,2003,(85):317-325.
  • 7Kalyan Veeramacaneni,Thanmaya Peram,Chilukuri Mohan,et al.Optimization using particle swarms with near neighbor interactions[J].Process Biochemistry,2003,44:110-122.
  • 8Kaski S,Logus K.Comparing self-organizing maps[A].Proceedings of ICANN96[C].[s.l.]:[s.n.],1996.809-814.
  • 9Mah R S H, Tamhane A C. Detection of gross errors in process data. AIChEJ., 1982, 28 (5): 828-830.
  • 10Yang Youqi, Ten Rongbo, Jao Luiqun. A study of gross error detection and data reconciliation in process industries. Computers and Chemical Engineering, 1995, 19 (suppl. 1) : 217 222.

共引文献2

同被引文献14

  • 1JieZhang.Batch Process Modelling and Optimal Control Based on Neural Network Model[J].自动化学报,2005,31(1):19-31. 被引量:6
  • 2陈佳,颜学峰,钱锋.基于贝叶斯学习的关联向量机及其在软测量中的应用[J].华东理工大学学报(自然科学版),2007,33(1):115-119. 被引量:11
  • 3高学金,王普,孙崇正,易建强,张亚庭,张会清.分阶段建立发酵过程模型的方法的研究和应用[J].系统仿真学报,2007,19(11):2574-2577. 被引量:7
  • 4Guimarfies O L C. Discoloration process modeling by neural network [J].Chemical engineering journal, 2008,140:71-- 76.
  • 5Bastion P, Esposito V V, Michel T. PLS generalized linear regression [J]. Computational statistics and data analysis, 2005,48(1) : 17-- 46.
  • 6Wenjian Wang, Changqian Men, Weizhen Lu. Online prediction model based on support vector machine [J]. Neurocomputing, 2008,71 : 550-- 558.
  • 7Kohonen T, Member S. The self--organizing map [J]. Proceedings of the IEEE, 1990, 78(9):1464--1480.
  • 8Johnson R A, Wichem D W. Applied multivariate statistical analysis [M]. Beijing:Tsihua university press, 2001.
  • 9Vapnik V N. The nature of statistical learning theory [M]. New York: Springer--Verlag, 1995.
  • 10Tipping M E. Sparse bayesian learning and the relevance vector machine [J].The journal of machine learning research, 2001(1) : 211--244.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部