期刊文献+

具有CEPGV—逆半群的正则同余与群同余

Regular Congruence and Group Congruence of CEPGV—Inverse Semigroup
下载PDF
导出
摘要 主要证明了具有CEPGV—逆半群S,当E为S的幂等元半格时,RC(S)为C(S)的子格;tr:p→trp为S上正则同余格RC(S)到E上同余格C(E)上的完全同态,ρθ=|ρmin,ρmax|。还研究了具有CEPGV—逆半群上的群同余,并证明了ρ→ρv(ρ∈C(S))为S上同余格C(S)到S上群同余格上的同态。 CEPGV--Inverse Semigroup S was Proved, When E was one Idempotent Semilattice of SRC(S) was one Sublattice of C (S) tr: p→trp was Completely Homomorphism from RC (S) to C (E) ρθ = [ ρmin, ρ^max] was proved. Group congruence of CEPGV--Inverse Semigroup was studied, and ρ→ ρ ∨δ (ρ ∈ c (s)) was homomorphism from C (S) to S of group congruence lattic.
出处 《武汉工业学院学报》 CAS 2008年第4期110-112,共3页 Journal of Wuhan Polytechnic University
关键词 CEP CEPGV-逆半群 正则同余 群同余 CEP, CEPGV--Inverse Semigroup, Regular congruence, Croup congruence.
  • 相关文献

参考文献2

  • 1Petrich M. Regular Semigroups which are Subdirect Products of a band and a Semilattice of groups [ J ]. Glasgow Math J, 1973, 14 :27- 49.
  • 2Petrich M. The structure of completely regular semigroups [ J ]. Trans American Math Soc, 1974, 189:211-236.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部