期刊文献+

一种用于多目标优化的混合粒子群优化算法 被引量:5

Hybrid particle swarm optimization algorithm for multi-objective optimization
下载PDF
导出
摘要 将粒子群算法与局部优化方法相结合,提出了一种混合粒子群多目标优化算法(HMOPSO)。该算法针对粒子群局部优化性能较差的缺点,引入多目标线搜索与粒子群算法相结合的策略,以增强粒子群算法的局部搜索能力。HMOPSO首先运行PSO算法,得到近似的Pareto最优解;然后启动多目标线搜索,发挥传统数值优化算法的优势,对其进行进一步的优化。数值实验表明,HMOPSO具有良好的全局优化性能和较强的局部搜索能力,同时HMOPSO所得的非劣解集在分散性、错误率和逼近程度等量化指标上优于MOPSO。 Combining particle swarm search with local search,a hybrid multi-objective particle swarm optimization(HMOPSO) algorithm for multi-objective optimization is proposed.Aiming at the defect of local optimization for PSO,HMOPSO introduces multi-objective linearity search as a means of acceleration and refinement of the solutions of particle swarm search to improve search performance.It first runs the PSO in order to obtain approximative Pareto optimal solutions.Once the MOPSO is over,multi-objective linearity search is then run with each previously obtained solution to find a better solution.Simulation results show that HMOPSO,compared with MOPSO,can improve efficiency of optimization and ensure a better convergence,spacing and error ration to the true Pareto optimal front.
作者 徐刚 瞿金平
出处 《计算机工程与应用》 CSCD 北大核心 2008年第33期18-21,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.10472034 No.10590351~~
关键词 多目标优化 粒子群算法 局部搜索 PARETO最优 multi-objective optimization PSO algorithm local search Pareto optimal solution
  • 相关文献

参考文献9

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings IEEE International Conference on Neural Networks,USA,1995: 1942-1948.
  • 2孙小强,张求明.一种基于粒子群优化的多目标优化算法[J].计算机工程与应用,2006,42(18):40-42. 被引量:17
  • 3熊盛武,刘麟,王琼,史旻.改进的多目标粒子群算法[J].武汉大学学报(理学版),2005,51(3):308-312. 被引量:21
  • 4Coello Coello C A,Lechuga M S.MOPSO:A Proposal for Multiple Objective Particle Swarm Optimization[C]//IEEE Congress on Evolutionary Computation ( CEC- 2002 ), Honolulu, Hawaii, USA, 2002 : 1051-1056.
  • 5Zitzler E.Evolutionary algorithms for multi-objective optimization: methods and applications[D].Swiss Federal Institute of Technology, Zurich, 1999.
  • 6Zitzler E,Ded K,Thiele LComparison of multiobjective evolutionary algorithms : empirical results [J].Evolutionary Computation, 2002,8 (2): 173-195.
  • 7李宁,邹彤,孙德宝,秦元庆.基于粒子群的多目标优化算法[J].计算机工程与应用,2005,41(23):43-46. 被引量:53
  • 8张雅波,罗长童.一种有效的多目标混合遗传算法[J].天津工程师范学院学报,2006,16(3):24-26. 被引量:2
  • 9Coello Coello C A,Pulido G T,Lechuga M S.Handling muhiple objectives with particle swarm optimization [J].IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 256-279.

二级参考文献33

  • 1Pareto V.Cours D'Economic Politique,volume I and Ⅱ [M].F Rouge,Lausamme, 1896.
  • 2E Zitzler.Evolutionary algorithms for multiobjective optimization: methods and applications[D].Ph D thesis.Swiss Federal Institute of Technology,Zurich, 1999.
  • 3J Kennedy,R C Eberhart.Particle Swarm Optimization[C].In:Proc IEEE International Conference on Neural Networks, 1995.
  • 4R C Eberhart,Y Shi.Partiele swarm opt mization:developments,applications and resources[C].In:Proc,Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001:81-86.
  • 5C A Coello Coello,M S Lechuga. MOPSO: A proposal for multiple objective particle swarm optimization[C]JrrIEEE Congress on Evolutionary Computation (CEC 2002 ), Honolulu, Hawaii, USA, 2002:1051 - 1056.
  • 6C A Coello Coello,G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation, 2004;8(3) :256-279.
  • 7K E Parsopoulos,M N Varhatis. Particle swarm optimization method in multiobjective problems[C].In : Proc, ACM Symp on Applied Computing,Madrid, Spain, 2002:603-607.
  • 8X Hu,R C Eberhart.Muhiobjective using dynamic neighborhood particle swarm optimization[C].In:Proc,Congress Evolutionary Compution, Honolulu,Hawaii, USA, 2002:1677-1681.
  • 9X Hu,R C Eberhart,Y Shi.Particle swarm with extended memory for multiobjective particle swarm optimization[C].In : Proc IEEE Swarm Intelligence Symp, Indianapolies, IN, USA, 2003:193-197.
  • 10E Zitzler, M Laumanns,L T C Fonseca et al.Why quality assessment of Multiobjective optimizers is difficult[C].In :Proc of the Genetic and Evolutionary Computation Conference (GECCO 2002 ), 2002:666-674.

共引文献84

同被引文献60

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部