期刊文献+

量子进化算法研究进展 被引量:61

Advances in quantum-inspired evolutionary algorithms
原文传递
导出
摘要 在介绍量子进化算法(QEA)的原理、特点和基本流程的基础上,重点综述QEA的改进,包括改进基本算子、引入新算子、改变种群规模、扩展为并行算法和构造新型算法框架等.介绍了QEA的应用研究,进而提出了QEA在理论、算法、组合优化、多目标优化与约束优化、不确定优化及应用方面的若干进一步的研究内容. After introducing the mechanism, features and basic procedure of quantum-inspired evolutionary algorithm (QEA), the improvements on QEA are surveyed in detail, including improving the basic operators, introducing novel operators, varying population size, extending to parallel algorithms, constructing novel algorithmetic framework, and so on. Moreover, the applications of QEA are surveyed as well. Furthermore, some future research contents with respect to theory, algorithms, combinational optimization, multi-objective optimization, constrained optimization, stochastic optimization and applications are pointed out.
作者 王凌
出处 《控制与决策》 EI CSCD 北大核心 2008年第12期1321-1326,共6页 Control and Decision
基金 国家自然科学基金项目(60774082) 国家863计划项目(2007AA04Z155) 国家973计划项目(2002CB312200)
关键词 量子进化算法 量子位 量子计算 Quantum-inspired evolutionary algorithms Q-bit Quantum computing
  • 相关文献

参考文献32

  • 1Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. Proc of 35th Symposium: Foundation of Computer Science. Santa Fe, 1994: 20-22.
  • 2Grover L K. A fast quantum mechanical algorithm for database search[C]. Proc of 28th ACM Symposium: Theory of Computing. New York, 1996: 212-221.
  • 3Zhao Qianchuan. Quantum computing and quamtum information (Ⅰ)--Quantum computing [M]. Beijing: Tsinghua University Press,2004.
  • 4Narayanan A, Moore M. Quantum-inspired genetic algorithm [C]. IEEE Congress on Evolutionary Computation. Nogaya, 1996: 61-66.
  • 5Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Trans on Evolutionary Computation, 2002, 6(6) 580:593.
  • 6Han K H, Kim J H. Euantum-inspired evolutionary algorithm with a new termination criterion, Ht gate and two-phase scheme [J]. IEEE Trans on Evolutionary Computation, 2004, 8(2): 156-169.
  • 7Chen H, Zhang J, Zhang C. Chaos updating rotated gates quantum-inspired genetic algorithm[C]. Int Conf on Communications, Circuits and Systems. Chengdu, 2004: 1108-1112.
  • 8Jordan A N. Topics in quantum chaos [D]. Santa Barbara:University of California Santa Barbara, 2002.
  • 9Yang S, Wang M, Jiao L. A novel quantum evolutionary algorithm and its application [C]. IEEE Congress on Evolutionary Computation. Vancouver, 2004 : 820-826.
  • 10Li B, Zhuang Z. Genetic algorithm based-on the quantum probability representation [C]. Proc of Intelligent Data Engineering and Automated Learning. Manchester, 2002: 500-505.

二级参考文献28

  • 1杨俊安,邹谊,庄镇泉.基于多宇宙并行量子遗传算法的非线性盲源分离算法研究[J].电子与信息学报,2004,26(8):1210-1217. 被引量:10
  • 2陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 3赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1999..
  • 4Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring[A]. Proc of the 35th Annual Symposium on the Foundation of Computer Sciences[C]. Los Alamitos: IEEE Computer Society Press,1994.20-22.
  • 5Grover L K. A fast quantum mechanical algorithm for database search[A]. Proc of 28th Annual ACM Symposium on the Theory of Computing[C]. Philadelphia: ACM Press, 1996.212 - 221.
  • 6Narayanan A, Moore M. Quantum inspired genetic algorithms[A].Proce of the 1996 IEEE International Conference on Evolutionary Computation (ICEC96)[C]. Nogaya: IEEE Press, 1996.41-46.
  • 7Han K-H. Genetic quantum algorithm and its application to combinatorial optimization problem[A]. IEEE Proc of the 2000 Congress on Evolutionary Computation[C]. San Diego: IEEE Press, 2000.1354-1360.
  • 8Yang Jun' an, et al. Research & realization of image separation method based on independent component analysis & genetic algorithm[A]. International Congress on Image and Graph 2002[C]. Hefei:SPIE Press,2002.575-582.
  • 9Grosso P B. Computer Simulation of Genetic Algorithm Adaptation:Parallel Subcomponent Interaction in a Multi-Locals Model[D]. The University of Michigan, 1985.
  • 10H.L. Tan, S.B. Gelfand, and E.J. Delp. A comparative cost function approach to edge detection. IEEE Trans.System, Man and Cybernetic. 1989,19(6): 1337-1349.

共引文献121

同被引文献665

引证文献61

二级引证文献411

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部