期刊文献+

一种基于Cholesky分解的动态无偏LS-SVM学习算法 被引量:14

Dynamic non-bias LS-SVM learning algorithm based on Cholesky factorization
原文传递
导出
摘要 针对最小二乘支持向量机用于在线建模时存在的计算复杂性问题,提出一种动态无偏最小二乘支持向量回归模型.该模型通过改进标准最小二乘支持向量机结构风险的形式消除了偏置项,得到了无偏的最小二乘支持向量机,简化了回归系数的求解.根据模型动态变化过程中核函数矩阵的特点,设计了基于Cholesky分解的在线学习算法.该算法能充分利用历史训练结果,减少计算复杂性.仿真实验表明了所提出模型的有效性. Aiming at the computational complexity of LS-SVM' s on-line modeling, a dynamic non-bias least square support vector regression model is proposed. The model eliminates the bias of LS-SVM by improving the form of structure risk. As a result, the non-bias LS-SVM is achieved and the calculation method of regression coefficients is simplified. Then an online learning algorithm based on the Cholesky factorization is designed according to the character of kernel function matrix in the model's dynamic change process. The improved learning algorithm can make full use of the historical training results and reduce the computational complexity. Experimental results indicate the effectiveness of the dynamic non-bias LS-SVM.
出处 《控制与决策》 EI CSCD 北大核心 2008年第12期1363-1367,共5页 Control and Decision
基金 国家自然科学基金重点项目(60736026) 教育部新世纪优秀人才支持计划项目
关键词 最小二乘支持向量机 在线学习 时间序列预测 系统辨识 Least square support vector machine (LS-SVM) Online learning Time series prediction System identification
  • 相关文献

参考文献14

  • 1Vapnik V N. Statistical learning theory [M]. New York:Wiley, 1998.
  • 2Suykens J A K, Vandewalle J. Least square support vector machines classifiers [J ]. Neural Processing Letters, 1999, 9(3):293-300.
  • 3Alistair Shilton M, Palaniswami Daniel Ralph, Ah Chung Tsoi. Incremental training of support vector machines[J]. IEEE Trans on Neural Networks, 2005, 16(1):114-131.
  • 4Lau K W, Wu Q H. Online training of support vector classifier[J]. Patten Regression, 2003, 36 (8) : 1913- 1920.
  • 5Ma J, Theiler J, Perkens S. Accurate on-line support vector regression[J]. Neural Computation, 2003, 15 (11) : 2683-2703.
  • 6张浩然,汪晓东.回归最小二乘支持向量机的增量和在线式学习算法[J].计算机学报,2006,29(3):400-406. 被引量:112
  • 7范玉刚,李平,宋执环.动态加权最小二乘支持向量机[J].控制与决策,2006,21(10):1129-1133. 被引量:34
  • 8Vijayakumar S. Sequential support vector classifiers and regression[C]. Proc of Int Conf on Soft Computing. Genoa, 1999: 610-619.
  • 9Haoran Zhang, Changjiang Zhang, Xiaodong Wang, et al. A new support vector machine and its learning algorithm[C]. Proc of the 6th World Congress on Control and Automation. Dalian, 2006: 2820-2824.
  • 10Yaakov Engel, Shie Mannor, Ron Meir. Sparse online greedy support vector regression[C]. Proc of European Conf on Machine Learning. Berlin: Spring-Verlag, 2002 : 84-96.

二级参考文献23

  • 1叶美盈,汪晓东,张浩然.基于在线最小二乘支持向量机回归的混沌时间序列预测[J].物理学报,2005,54(6):2568-2573. 被引量:104
  • 2赵登福,庞文晨,张讲社,王锡凡.基于贝叶斯理论和在线学习支持向量机的短期负荷预测[J].中国电机工程学报,2005,25(13):8-13. 被引量:36
  • 3Vapnik V.N..The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995
  • 4Cherkassky V.,Mulier F..Learning From Data-Concepts,Theory and Methods.New York:John Wiley Sons,1998
  • 5Joachims T..Text Categorization with support vector machines:Learning with Many Relevant Features.In:Proceedings of the European Conference on Machine Learning (ECML),1998,137~142
  • 6Guyon I.,Weston J.,Barnhill S..Gene selection for cancer classification using support vector machines.Machine Learning,2002,46(1):389~422.
  • 7Kivinen J.,Smola A.,Williamson R..Online learning with kernels.In:Diettrich T.G.,Becker S.,Ghahramani Z.eds..Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2002,785~793
  • 8Ralaivola L.et al..Incremental support vector machine learning:A local approach.In:Proceedings of the International on Conference on Artificial Neural Networks,Vienna,Austria,2001,322~329
  • 9Ruping S..Incremental learning with support vector machines.Dortmund University,Dortmund:Technical Report TR 18,2002
  • 10Martin M..On-line support vector machines for function approximation.Politecnica University,Catalunya,Spain:Technical Report LSI-02-11-R,2002

共引文献132

同被引文献117

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部