期刊文献+

基于集对分析的不确定多属性决策方法 被引量:27

Uncertain multi-attribute decision making methods based on set pair analysis
原文传递
导出
摘要 提出一种基于集对分析的多属性决策方法.该方法具有如下特点:能够有效处理决策过程中的不确定因素;基于可能势的联系数排序能够准确反映联系数间的同一对立程度,并能利用联系数的差异度对排序结果进行稳定性分析;用联系数决策矩阵的概念来刻画备选方案与正、负理想方案组成集对的同一对立程度,并以此为依据实现多属性决策.实例计算表明,该方法是求解不确定多属性决策问题的一种有效工具. The new multi-attribute decision making (MADM) methods based on set pair analysis are proposed. The methods can effectively deal with the uncertain factors in decision making process. The ranking methods based on relatively certainty probability power can accurately depict the identity-contrary degree of the connection numbers and analyze the reliability of the ranking result by the discrepancy degree of connection numbers. Connection number decision matrix can obtain the identity-contrary degree of the set pairs structured by alternative schemes and ideal scheme, and is the core of MADM. Simulation results show that the proposed method is an effective tool to solve the uncertain multi-attribute decision making problems.
出处 《控制与决策》 EI CSCD 北大核心 2008年第12期1423-1426,共4页 Control and Decision
基金 国家自然科学基金项目(50539140) 水利部公益性行业科研项目(200701008)
关键词 集对分析 多属性决策 联系数 不确定性 Set pair analysis Multi-attribution decision-making Connection number Uncertainties
  • 相关文献

参考文献5

  • 1贺金凤,徐济超,吴卫东.不确定性多属性决策中的ER方法改进[J].控制与决策,2006,21(4):385-390. 被引量:10
  • 2张斌.多目标系统决策的模糊集对分析方法[J].系统工程理论与实践,1997,17(12):108-114. 被引量:60
  • 3Su H S, Mi G S. Set pair analysis applied for identifying power transformer faults [C]. Int Conf on Machine Learning and Cybernetics. Dalian, 2006: 1708-1713.
  • 4Dong L, Li G G, He Z X. Pattern recognition based on all set theory and SPA in complex system innovative computing [C]. 1st Int Conf on Information and Control. Beijing, 2006: 204-208.
  • 5Huang D C, Zhao K Q. Uncertainty network planning methodology based on the connection number a-kbi-k cj [C]. 5th World Congress on Intelligent Control and Automation. Hangzhou, 2004:2863-2866.

二级参考文献26

共引文献68

同被引文献212

引证文献27

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部