期刊文献+

一种保持群体多样性的多目标遗传算法 被引量:10

Multi-objective optimization genetic algorithm keeping diversity of population
原文传递
导出
摘要 提出一种保持群体多样性的多目标遗传算法.该算法采用一种基于信息熵的测度,以衡量群体在多目标空间下的多样性,并利用该测度将群体当前的进化状态(多样性)与算法的运行机制相关联,设计了若干种增强算法探索力度的策略,有效地开拓了算法的搜索范围,提高了进化过程中群体的多样性,防止了算法早熟收敛.对所提出算法的计算复杂度进行了理论分析.仿真实验表明,所提出的算法具有较好的收敛性能和分布特性. A multi-objective genetic algorithm keeping diversity of the population is proposed. The algorithm uses a metric based on entropy to measure the diversity of the population in the case of multi-objective space. The evolving state of the current population is associated with the running mechanism of the algorithm by the diversity metric, and several strategies are designed to enhance the extent of exploration of the algorithm, which widens the searching range of the algorithm, and increases the diversity of the evolving population and prevents premature convergence. The computational complexity of the algorithm is analyzed theoretically. Simulation results indicate that the proposed algorithm has good performance of convergence and distribution.
出处 《控制与决策》 EI CSCD 北大核心 2008年第12期1435-1440,共6页 Control and Decision
基金 国家自然科学基金项目(60174019 60474034) 江苏省自然科学基金项目(BK2007210)
关键词 多样性 多目标优化 遗传算法 Diversity Multi-objective optimization Genetic algorithm Entropy
  • 相关文献

参考文献13

  • 1Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms.. Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 2Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 3Knowles J D, Corne D W. The pareto archived evolution strategy: A new baseline algorithm for pareto multiobiective optimization[C]. Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 98-105.
  • 4Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach[J]. IEEE Trans on Evolutionary Computation, 1999, 3(4):257-271.
  • 5Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm[R]. Zurich: Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 2001.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J].IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197.
  • 7雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 8Farhang-Mehr A, Azarm S. Diversity assessment of pareto optimal solution sets:An entropy approach[C]. Proc of the 2002 Congress on Evolutionary Computation. Piscataway: IEEE, 2002:723-728.
  • 9陈昌巨,武秀文.求解多目标优化问题基于相对熵的Pareto解演化算法[J].华中农业大学学报,2003,22(1):65-69. 被引量:4
  • 10Deb K, Goel T. Controlled elist non-dominated sorting genetic algorithms for better convergence[C]. 1st Int Conf on Evolutionary Multi-criterion Optimization. Zurich: Springer-Verlag, 2001: 67-81.

二级参考文献18

  • 1[1]Van Veldhuizen D A, Lamont G B. Multi-objective evolutionary algorithms:analyzing the state-o-the-art. Evolutionary Computation, 2000,8(2): 125~147
  • 2[2]Deb K. Multi-objective optimization using evolutionary algorithms. New York:John Wiley & Sons,2001
  • 3[3]Srinivas N, Deb K. Multi-objective optimization using non-domitated sorting in genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 4[4]Fonseca C M, Flemming P J. Multi-objective optimization and multiple constraints handling with evolutionary algorithms.Part 1:A unified formulation. IEEE Transactions on System, Man and Cybernetics-Part A Systems and Humans, 1998,28(1): 26~37
  • 5[5]Shannon C E. A mathematical theory of communication.[s.l.]: B S T J ,1948
  • 6[6]Zitzler E, Theile L. Multi-objective evolutionary algorithms: A comparative case study and the strength pareto spproach. IEEE Transactions on Evolutionary Computation, 1999,3(4): 257~271
  • 7Schaffer J.D.. Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the lst International Conference on Genetic Algorithm, Lawrence Erlbaum Associates, Hillsdale, 1985, 93~100.
  • 8van Veldhuizen D.A., Lamont G.B.. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evolutionary Computation, 2000, 8(2): 125~147.
  • 9Knowles J.D., Corne D.W.. Approximating the nondominated front using the Pareto archive evolutionary strategy. Evolutionary Computation, 2000, 8(2): 149~172.
  • 10Knowles J.D., Corne D.W.. M-PAES: A memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC,2000,1: 325~332.

共引文献25

同被引文献146

引证文献10

二级引证文献459

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部