期刊文献+

SiCP/AZ61镁基复合材料局部重熔的组织演变 被引量:1

The microstructural evolution of SiC_P/AZ61 magnesium matrix composites during partial remelting
下载PDF
导出
摘要 研究了SiCP/AZ61镁基复合材料在局部重熔中的组织演变及其影响因素。结果表明,SiCP/AZ61镁基复合材料局部重熔最佳工艺参数为,加热温度595℃~600℃、保温时间30min^60min。与AZ61基体合金相比,复合材料在局部重熔时的初始分离速率明显较慢;SiCP/AZ61镁基复合材料在重熔过程中具有较高的稳定性,即随温度的提高和保温时间的延长,获得的半固态触变组织更细小。当局部重熔加热温度高于610℃时,复合材料坯料组织易发生严重变形并出现流淌现象,使得重熔试验无法进行。 The microstructural evolution and influencing factors of SiCP/AZ61 magnesium matrix composites during partial remelting was investigated. The results indicated that optimally technological parameters of SiCP/AZ61 magnesium matrix composites were the reheating temperature of 595℃-600℃ and isothermal holding time of 30min-60min. Compared with that of the monolithic AZ61 alloy, a separation tendency of the microstructure of SiCP/AZ61 magnesium matrix composites was slower than that of the monolithic alloy during the initial stage of partial remelting; In the meantime, SiCP/AZ61 magnesium matrix composites possessed high stability during the remelting process and the finer of semi-solid thixoforming microstructure can be obtained with the increasing of temperature and the prolongation of holding time. In addition, the samples of SiCP/AZ61 magnesium matrix composites were susceptible to serious deformation and running out as a flow above 610℃, accordingly it's not feasible to perform an experiment during partial remelting.
出处 《塑性工程学报》 CAS CSCD 北大核心 2008年第6期139-143,共5页 Journal of Plasticity Engineering
基金 国家自然科学基金资助项目(50465003,50765005) 江西省自然科学基金资助项目(2007GZC1826) 江西省教育厅资助项目
关键词 SiCP/AZ61镁基复合材料 组织演变 半固态 局部重熔 触变成形 SiCP/AZ61 magnesium matrix composites microstructural evolution semi-solid partial remelting thixoforming
  • 相关文献

参考文献14

  • 1Hai Z Y,Xing Y L. Review of recent studies in magnesium matrix composites [J]. Journal of materials science, 2004. 39:6153-6171
  • 2Q D Qin, Y G Zhao, K Xiu, et al. Microstructure evolution of in situ Mg2 Si/Al-Si-Cu composite in semisolid remelting processing[J]. Materials Science and Engineering , 2005. A407 : 196-200
  • 3M C Flemings. Behavior of Metal Alloys in the Semisolid State[J]. Metall. Trans. 1991. (22A): 957-981
  • 4张发云,闫洪,周天瑞,揭小平,胡勇.AZ61合金半固态二次加热工艺及组织演变[J].塑性工程学报,2006,13(4):100-103. 被引量:11
  • 5王顺成,温景林,陈彦博,曹富荣,李英龙.A2017半固态合金二次加热工艺及组织演化机制[J].铸造,2004,53(8):590-594. 被引量:11
  • 6毛卫民,钟雪友,李立强.AlSi7Mg非枝晶合金半固态重熔加热时的组织演变[J].铸造,1998,47(8):10-12. 被引量:23
  • 7谢水生,潘洪平,丁志勇.半固态金属加工技术研究现状与应用[J].塑性工程学报,2002,9(2):1-11. 被引量:68
  • 8Jung H k, Kang C G. Reheating process of cast and wrought aluminum alloys for thixoforging and their globularization mechanism [J]. Journal of Materials Processing Technology, 2000. 104(2) : 244-253
  • 9Hong T W,Kim S K, Ha H S, et al. Microstructural evolution and semisolid forming of SiC particulate reinforced AZ91HP magnesium composites[J]. Mater Sci Technol, 2000.16(7-8) :887-892
  • 10Kim S K, Kim Y J. Microstructural evolution and thixoformability of semisolid SiCp/Z91D Mg composites[J]. Mater Trans,2002. 42(7) :1277-1283

二级参考文献51

  • 1闫洪,周冰锋,张发云,罗忠民,夏巨谌.半固态AZ61镁合金触变压缩变形特性[J].塑性工程学报,2005,12(z1):191-194. 被引量:5
  • 2王顺成,温景林,陈彦博,曹富荣,李英龙.A2017半固态合金二次加热工艺及组织演化机制[J].铸造,2004,53(8):590-594. 被引量:11
  • 3朱鸣芳,苏华钦.半固态等温热处理对ZA12合金组织和性能的影响[J].金属热处理,1996,21(1):33-36. 被引量:15
  • 4罗守靖 蒋鹏.国外半固态加工的一些工业应用情况.第一届半固态金属加工研讨会论文集[M].北京,2000.28-32.
  • 5邢书明 曾大本 等.半固态连铸技术经济分析.第一届半固态金属加工研讨会论文集[M].北京,2000.166-171.
  • 6张景新.金属半固态加工中的组织及其演变.北京有色金属研究总院硕士学位论文[M].,2000..
  • 7郭钧.半固态合金的制备及变形性研究.北京有色金属研究总院硕士学位论文[M].,1998..
  • 8刘丹.铝合金液相线制造制浆及半固态加工工艺及理论研究.东北大学博士论文[M].沈阳,1999..
  • 9高志强 王云华 等.半固态亚共晶铝硅合金组织的研究[J].特种铸造与有色合金,1997,(6):8-8.
  • 10Wang Ruyao,Metall Mater Trans A,1997年,28卷,3期,1233页

共引文献133

同被引文献18

  • 1C S RAMESH,S PRAMOD,R KESHAVAMURTHY.A study on microstructure and mechanical properties of Al 6061-TiB2in-situ composites[J].Materials Science and Engineering A,2011.528:4125-4132.
  • 2Y LI,K T RAMESH.Influence of particle volume fraction,shape,and aspect ratio on the behavior of particlereinforced metal-matrix composites at high rates of strain[J].Acta Materialia,1998.46(16):5633-5646.
  • 3S BALASIVANANDHA PRABU,L KARUNAMOORTHY.Microstructure-based finite element analysis of failure prediction in particle-reinforced metalmatrix composite[J].Journal of Materials Processing Technology,2008.207:52-63.
  • 4M N YUAN,Y Q YANG,C LI,et al.Numerical analysis of the stress-strain distributions in the particle reinforced metal matrix composite SiC/6064Al[J].Materials and Design,2012.38:1-6.
  • 5C SUN,M SONG,Z W WANG,et al.Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites[J].Journal of Materials Engineering and Performance,2011.20(9):1606-1612.
  • 6Y Li,K T RAMESH,E S C CHIN.The mechanical response of an A359/SiCpmmC and the A359aluminum matrix to dynamic shearing deformations[J].Materials Science and Engineering A,2004.382(1):162-170.
  • 7D Z ZHU,G H WU,G Q CHEN,et al.Dynamic deformation behavior of a high reinforcement content TiB2/Al composite at high strain rates[J].Materials Science and Engineering A,2008.487(1):536-540.
  • 8Z H TAN,B J PANG,D T QIN,et al.The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates[J].Materials Science and Engineering A,2008.489(1):302-309.
  • 9谭柱华,庞宝君,盖秉政.颗粒增强金属基复合材料SiCp/2024Al动态压缩力学性能实验研究[J].工程力学,2009,26(8):239-244. 被引量:2
  • 10王莺,周元鑫,夏源明.SiC颗粒增强铝基复合材料冲击拉伸力学性能的试验研究[J].材料科学与工艺,1998,6(3):1-6. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部