期刊文献+

第二类Beta算子对一类导数有界函数的逼近 被引量:1

Rate of Convergence of Beta Operators of Second Kind for a Class of Bounded Functions with Derivatives
下载PDF
导出
摘要 研究了第二类Beta算子的逼近性质,通过直接计算得到第二类Beta算子Ln(|t-x|,x)的一阶绝对矩的最优估计,由此估计结果结合Bojanic-Cheng-Khan的方法以及分析技巧,导出第二类Beta算子对一类导数有界函数的渐近估计,得出该算子的一个渐近展开公式. This paper studies the approximation properties of Beta operators of second kind. The optimal estimate on the first order absolute moment of Beta type operators L.of second kind Ln(|t-x|,x) is obtained by direct computations. And then this estimate and Bojanic-Cheng-Khan;s method combining with analytical techniques are used to derive an asymptotically optimal estimation on the rate of convergence of Beta type operators L.of second kind for a class of bounded functions with derivatives.
出处 《泉州师范学院学报》 2008年第6期1-4,共4页 Journal of Quanzhou Normal University
基金 国家自然科学基金项目(10571145) 福建省自然科学基金资助项目(2007J0188)
关键词 绝对连续函数 Beta型算子 收敛阶 LEBESGUE-STIELTJES积分 absolutely continuous functions Beta type operators rate of convergence Lebesgue-Stieltjes integral moments
  • 相关文献

参考文献7

  • 1STANCU D D. On the beta approximating operators of second kind[J]. Rev Anal Numer Theor Approx,1995(2) :231-239.
  • 2ABEL U. Asymptotic approximation with Stancu Beta operators[J]. Rev Ana Numer Theor Approx, 1998,27:5-13.
  • 3ABEL U, GUPTA V. Rate of convergence of Staneu Beta operators for functions of bounded variation[J]. Anal Numer Theor Approx, 2004,33:3- 9.
  • 4GUPTA V, ABEL U, IVAN M. Rate of convergence of beta operators of second kind for functions with derivatives of bounded variation[J]. International Journal of Mathematics and Mathematical Sciences,2005,23:3827-3833.
  • 5ZENG X M. Approximation properties of Gamma operators[J]. J Math Anal Appl, 2005,311 : 389-401.
  • 6NAMIAS V. A simple derivation of Stiring's asymptotic series[J]. Amer Math Monthly, 1986,93:25-29.
  • 7BOJANIC R,CHENG F. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J]. J Math Anal Appl,1989,141:136-151.

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部