期刊文献+

基于神经网络与特征融合的损伤诊断方法 被引量:4

Diagnosis method of structure damage using neural network and feature fusion
下载PDF
导出
摘要 为了能准确地诊断复杂结构损伤是否产生以及产生的位置和程度,提出了一种小波包分解、多传感器特征融合和神经网络模式分类相结合的结构损伤诊断方法。首先,用正交小波包对多个传感器采集的振动信号进行小波包分解,并计算每个频带上的相对能量;然后把这些传感器信号的小波包相对能量融合,构成神经网络分类器的输入特征向量,从而实现损伤的诊断和评价。研究结果表明:正交小波包分解的频带能量分布能够较好地反映结构的损伤特征;特征融合能够使不同传感器的信息相互补充,减小了损伤检测信息的不确定性,使诊断信息具有更高的精度和可靠性,提高了诊断准确率。 In order to diagnose the occurrence, position and degree of the damage of complex structures accurately, a method was presented by means of wavelet packet decomposition, multisensor feature fusion theory and neural network pattern classification. Firstly, taking the orthogonal wavelet as a basis function, vibration signals gathered from sensors were decomposed. Secondly, the relative energy of decomposed frequency band was calculated. Thirdly, the input feature vectors of neural network classifier were built by fusing wavelet packet relative energy distribution of these sensors. Finally, with the trained classifier, damage diagnosis and assessment were realized. The results indicate that: the frequency band energy decornposited by orthogonal wavelet packet could perfectly reflect the damage condition; the fused feature can make different information complementary, and reduce the uncertainty of damage detection information, so the diagnosis information has much more precision and reliability, and the diagnosis accuracy can be improved. 2 tabs, 3 figs, 10 refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第6期106-110,共5页 Journal of Chang’an University(Natural Science Edition)
基金 陕西省自然科学基金项目(2005E205)
关键词 小波包分解 频带能量 神经网络 特征融合 损伤诊断 wavelet packet decomposition frequency band energy neural network feature fusion damage diagnosis
  • 相关文献

参考文献7

  • 1Sun Z, Chang C C. Structural damage assessment based on wavelet pucker transform[J]. Journal of Structural Engineering, 2002,128 (10):1354-1361.
  • 2Yam I. H, Yan Y J, Jiang J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification [J]. Com posite Structures, 2003,60 (4) : 403-412.
  • 3Yuen K V, Lam H F. On the complexity of artificial neural networks for smart structures monitoring[J]. Engineering Structures, 2006,28 (7) : 977-984.
  • 4Gros X E, Bousique J, Takahashi K. NDT data fusion at pixel level [J]. NDT and E International, 1999,32(5) :283 -292.
  • 5Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics, 2004,130 ( 1 ) : 3-15.
  • 6Guo H Y. Structural damage detection using information fusion technique[J]. Mechanical Systems and Signal Processing, 2006,20(5 ) : 1173-1188.
  • 7段晨东,姜洪开,何正嘉.基于监测数据的特征小波构造及应用[J].长安大学学报(自然科学版),2006,26(2):107-110. 被引量:2

二级参考文献5

  • 1Sweldens W. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. SIAM J Math Anal,1996, 29(2): 511-546.
  • 2Ercelebi E. Second Generation Wavelet Transformbased Pitch Period Estimation and Voiced/unvoiced Decision for Speech Signals[J]. Applied Acoustics,2003, (64) :25 - 42.
  • 3Claypoole R L, Davis G M, Sweldens W, et al, Nonlinear Wavelet Transforms for Image Coding Via Lifting[J], IEEE Trans on Image Proeesing, 2003, 12(12): 1449 - 1459.
  • 4Claypoole R L, Adaptive Wavelet Transforms Via Lifting[D]. Houston: Rice University, 2000.
  • 5张磊,潘泉,张洪才,戴冠中.小波域滤波阈值参数c的选取[J].电子学报,2001,29(3):400-402. 被引量:64

共引文献1

同被引文献63

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部