摘要
对于二维齐次和非齐次非定常扩散方程问题,利用与时间有关的基本解,基于单层位势的延拓,建立虚边界积分方程,然后用虚边界元法求解.最后,给出了数值算例验证了虚边界元法求解非定常扩散方程问题的可行性和有效性.
The second-dimensional homogeneous and nonhomogeneous unsteady diffusion equation is solved. By adopting time-dependent fundamental solution and the extension of single potential, virtual boundary integral expression is established. Then virtual boundary element method is used to implement the numerical computation. Finally, numerical examples illustrate the feasibility and the efficiency of the proposed method.
出处
《北京工商大学学报(自然科学版)》
CAS
2008年第6期73-76,共4页
Journal of Beijing Technology and Business University:Natural Science Edition
关键词
非定常扩散方程
虚边界元
单层位势
unsteady diffusion equation
virtual boundary element
single layer potential