摘要
研究一类亚纯函数族在分担值条件下的正规性.设F是单位圆Δ上的亚纯函数族,a≠b,b≠0,c≠0是3个有穷复数,f∈F,f(z)零点的重数至少为k(k≥2),且满足:(1)f(z)=0f(k)(z)+a1(z)f(k-1)(z)+a2(z)f(k-2)(z)+…+ak(z)f(z)=a;(2)f(k)(z)+b1(z)f(k-1)(z)+b2(z)f(k-2)(z)+…+bk(z)f(z)=b■f=c,其中ai(z),bi(z)(i=1,2,…,k)为Δ上的全纯函数,则F在Δ上正规.
The normality of meromophic functions with shared values is dealt with and the following result is achieved. Let F be a family of meromorphic functions on the unit circle △, and a≠b, b≠0, c≠0 are finite complex numbers. For f∈ F, the zeros of f(z) are of mulitiplicity, at least, k(k≥2). If (1)f(z)=0 f^(k)(z)+a1(z)f^(k-1)(z)+a2(z)f^(k-2)(z)+…+ak(z)f(z)=a;(2)f^(k)(z)+b1(z)f(k-1)(z)+b2(z)f(k-2)(z)+…+bk(z)f(z)=6 f=c, ai(z) ,bi(z)(i = 1,2, …,k) are holomorphie functions on the unit circle A, then F is normal on unit circle △.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第6期1049-1052,共4页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10671067)
关键词
亚纯函数
分担值
正规定则
meromophic function
share value
normal criterion