期刊文献+

基于多重假设检验市长公开电话文本的自动分类 被引量:1

Text Automatic Classification Based on Multiple Hypothesis Testing in the Mayor's Public Access Line Project
下载PDF
导出
摘要 提出一种基于多重假设检验的特征加权朴素贝叶斯分类算法,该算法通过特征选择方法得到多个特征词集合,再按多重假设检验错误率为每个特征词集合配以不同的权重系数并参与到分类器的构建中.该方法已经应用到市长公开电话的文本分类中,通过构建的3个特征加权朴素贝叶斯分类器实现了投诉文本的计算机自动分类,且相对传统方法提高了分类器的效率和精度. On the basis of multiple hypothesis testing, we proposed a feature weighted naive Bayesian algorithm, which outputs many sets of feature words by means of feature selection, and assigns a coefficient to each set of feature words which is used to construct the classifier in terms of the error rate of multiple hypothe- sis testing. This algorithm was used in the text classification of the mayor' s public access line project, where we realized the automatic classification of complaint texts by constructing three feature weighted naive Bayesian classifiers. Compared with those of the traditional methods, the efficiency and accuracy of our classifier are higher
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第6期1101-1104,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10571073)
关键词 多重假设检验 文本分类 特征加权 市长公开电话 multiple hypothesis testing text classification feature weighted the mayor' s public access line project
  • 相关文献

参考文献18

  • 1Manning C, Schutze H. Foundations of Statistical Natural Language Processing [ M ]. Cambridge: MIT Press, 1999.
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2: 121-167.
  • 3Mehra P, Wah B W. Artificial Neural Networks : Concepts and Theory [ M ]. Los Alamitos : IEEE Computer Society Press, 1992.
  • 4Quinlan J R. CA. 5: Programs for Machine Learning [ M]. San Mateo: Morgan Kaufmann Publishers, 1993.
  • 5Kononenko I. Semi-naive Bayesian Classifier [ C ]//Proceedings of Sixth European Working Session on Learning. Berlin: Springer-Verlag, 1991 : 206-219.
  • 6ZHENG Zi-jian, Webb G I. Lazy Learning of Bayesian Rules [J]. Machine Learning, 2000, 41 (1) : 53-84.
  • 7Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers [J]. Machine Learning, 1997, 29(2) : 131-163.
  • 8Langley P, Iba W, Thompson K. An Analysis of Bayesian Classifiers [ C]//Proceedings of the 10th National Conference on Artificial Intelligence. Menlo Park: AAAI Press, 1992: 223-228.
  • 9Mitchell T M. Machine Learning [ M]. New York: McGraw-Hill, 1997.
  • 10Wettsehereck D, Aha D W, Mohri T. A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms [ J]. Artif Intell Rev, 1997, 11 (1/5) : 273-314.

二级参考文献6

共引文献7

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部