摘要
应用Leray-Schauder度理论给出二阶微分方程在积分边值条件下的单调性定理,利用该定理可直接判定右端函数f(t,x,x′)满足Nagumo条件的二阶微分方程解的存在性.
We gave a monotonicity theorem of second order differential equations under the integral boundaryvalue condition which can be applied to determining the existence of solutions for second order differential equations of right function f( t,x ,x') satisfying Nagumo condition. The main tool used in the proofs is LeraySchauder degree theory.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2008年第6期1116-1118,共3页
Journal of Jilin University:Science Edition
基金
高校博士学科点专项科研基金(批准号:20070183057)
吉林大学"985工程"研究生创新基金(批准号:20080239)
关键词
积分边值条件
存在性
单调性定理
integral boundary value condition
existence
monotonicity theorem