期刊文献+

具有积分边值条件的单调性定理 被引量:1

A Monotonicity Theorem under Integral Boundary Value Condition
下载PDF
导出
摘要 应用Leray-Schauder度理论给出二阶微分方程在积分边值条件下的单调性定理,利用该定理可直接判定右端函数f(t,x,x′)满足Nagumo条件的二阶微分方程解的存在性. We gave a monotonicity theorem of second order differential equations under the integral boundaryvalue condition which can be applied to determining the existence of solutions for second order differential equations of right function f( t,x ,x') satisfying Nagumo condition. The main tool used in the proofs is LeraySchauder degree theory.
作者 李映红 余军
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2008年第6期1116-1118,共3页 Journal of Jilin University:Science Edition
基金 高校博士学科点专项科研基金(批准号:20070183057) 吉林大学"985工程"研究生创新基金(批准号:20080239)
关键词 积分边值条件 存在性 单调性定理 integral boundary value condition existence monotonicity theorem
  • 相关文献

参考文献8

  • 1Denche M, Berkane A. Boundary Value Problem for Abstract First Order Differential Equation with Integral Condition [ J ]. J Math Anal Appl, 2007, 333 (2) : 657-666.
  • 2Gupta C P. A Generalized Multi-point Boundary Value Problem for Second-order Ordinary Differential Equations [ J ]. Appl Math Comput, 1998, 89: 133-146.
  • 3Henderson J. Double Solutions of Three-point Boundary Value Problems for Second-order Differential Equations [ J ]. Electronic J Differential Equations, 2004( 115 ) : 1-7.
  • 4Ma R. Positive Solutions of a Nonlinear Three-point Boundary Value Problem [ J ]. Electronic J Differential Equations, 1999(8) : 1-8.
  • 5Chen G P, Shen J H. Integral Boundary Value Problems for First Order Impulsive Functional Differential Equations [ J ]. Int J Math Anal, 2007, 1 (20) : 965-974.
  • 6YANG Zhi-lin. Existence and Nonexistence Results for Positive Solutions of an Integral Boundary. Value Problem [ J ]. Nonlinear Anal, 2006, 65 (8) : 1489-1511.
  • 7YANG Zhi-lin. Positive Solutions of a Second-order Integral Boundary Value Problem [ J ]. J Math Anal Appl, 2006, 321(2) : 751-765.
  • 8De Hoog F R, Mattheij R M M. On the Conditioning of Multipoint and Integral Boundary Value Problems [ J ]. SIAM J Math Anal, 1989, 20(1) : 200-214.

同被引文献6

  • 1Ahmad B,Sivasundaram S.Existence of Solutions for Impulsive Integral Boundary Value Problems of Fractional Order[J].Nonlinear Anal:Hybrid Syst,2010,4(1):134-141.
  • 2WANG Guo-tao,SONG Guang-xing,ZHANG Li-hong.Integral Boundary Value Problems for First Order Integro-Differential Equations with Deviating Arguments[J].J Comput Appl Math,2009,225(2):602-611.
  • 3YANG Zhi-lin.Existence and Uniqueness of Positive Solutions for an Integral Boundary Value Problem[J].Nonlinear Anal:Theory,Methods & Applications,2008,69(11):3910-3918.
  • 4CHEN Guo-ping,SHEN Jian-hua.Integral Boundary Value Problems for First Order Impulsive Functional Differential Equations[J].Int J Math Anal,2007,1(20):965-974.
  • 5YANG Zhi-lin.Existence and Nonexistence Results for Positive Solutions of an Integral Boundary Value Problem[J].Nonlinear Anal:Theory,Methods & Applications,2006,65(8):1489-1511.
  • 6Kasymov K A,Faraq Shavki Khashem.On Singularities of an Integral Boundary Value Problem for Second-Order Singularly Perturbed Linear Differential Equations[J].Vestn Minist Nauki Vyssh Obraz Nats Akad Nauk Resp Kaz,1999,6:40-46.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部