摘要
设G为具有n个顶点的图,Zn为模n整数加群.从G的顶点集到Zn的任一双射f称为G的一个循环标号.f的循环带宽Bc(G,f)定义为max(u,v)∈E(G)d(f(u),f(v)),其中对任意x,y∈Zn,d(x,y)=min{|x-y|,n-|x-y|}.G的循环带宽Bc(G)是指对G的所有循环标号f的循环带宽的最小值.借鉴关于带宽的已有结论,深入讨论循环带宽的Harper型下界。
Let G be a graph of order n and Z n the additive group of integers modulo n . Any bijection f from the vertex set of G to Z n is called a cyclic labeling f which is defined as max (u, v)∈E(G) d(f(u), f(v)) , where d(x, y) =min {|x-y|, n-|x-y|} for x, y ∈Z n . The cyclic bandwidth of G , denoted by B c(G) , is the minimum value of B c(G, f) and is taken for all cyclic labelings f of G . Some lower bounds for the cyclic bandwidth are given and the results obtained will be helpful in the determination of the cyclic bandwidth of some special types of graph.
出处
《华中理工大学学报》
CSCD
北大核心
1997年第A01期92-94,共3页
Journal of Huazhong University of Science and Technology