摘要
证明了森或树的任一正特征值λq-i(i=q-1,q-2,…,0)满足λq-i≥2cos[tiπ/(2ti+1)](ti=[[2q/(i+1)]/2]),并指出这个下界对于边独立数为q的森或者顶点数为n、边独立数为q的森是最好可能的;对于边独立数为q的树或者顶点数为n、边独立数为q的树当i=q-2,q-3,…,q-[(q+1)/2]或当i=q-[(q+1)/2]-1,q-[(q+1)/2]-2,…,1(q0(modi+1))时。
Let λ q-i (i=q-1, q-2, …, 0) be any positive eigenvalue of a forest or a tree, q the independence number, and the maximum integer no greater than x . It is proved thatλ q-1 ≥2 cos [t i π /(2t i+1)] where t i=[[2q/(i+1)]/2]and this lower bound is the best possible one for a forest with n vertices and an edge independence number of q , or for a tree with an edge independence number q . For such a tree, if i=q-2, q-3, …, q- or i=q-[(q+1)/2]-1, q--2, …, 1 and q0 (mod i+1) , this lower bound is the best possible one.
出处
《华中理工大学学报》
CSCD
北大核心
1997年第A01期99-101,共3页
Journal of Huazhong University of Science and Technology