期刊文献+

基于自适应遗传算法的粗糙集属性约简方法 被引量:2

Rough Set Attribute Reduction Algorithm Based on Adaptive GA
下载PDF
导出
摘要 针对遗传算法在全局优化问题中出现的早熟收敛和后期收敛速度较慢的现象,提出了一种基于自适应遗传算法的粗糙集属性约简方法。该算法基于自适应交叉概率算子和变异算子,根据进化代数和群体的适应值,动态调整各个个体的交叉概率和变异概率,优化了各个个体被选择的概率。实验表明,该方法能够明显地改善全局寻优能力,并大大加快了收敛速度。 To deal with the prematurity and low convergence speed when the genetic algorithm is used for global optimization, a rough set attribute reduction algorithm based on adaptive GA was proposed. Based on the adaptive crossover operator and mutation operator that adjust the crossover probability and mutation probability of each individual, the selection probability of every individual of the population was optimized in this algorithm. Experimental results show that the algorithm can evidently improve global optimization capability and convergence speed.
作者 王杨
出处 《辽宁石油化工大学学报》 CAS 2008年第4期73-77,共5页 Journal of Liaoning Petrochemical University
关键词 粗糙集 自适应遗传算法 属性约简 Rough set Adaptive genetic algorithm Attribute reduction
  • 相关文献

参考文献8

二级参考文献21

  • 1Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht :Kluwer Academic Publishers,1991:9-30.
  • 2Pawlak Z. Rough set theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668.
  • 3Hu X H. Mining knowledge rules from databases-a rough set approach[A]. Proceedings of IEEE International Conference on Data Engineering[C]. Los Alamitos,1996:96-105.
  • 4Wang S K M ,Ziarko W. On optimal decision rules in decision tables[J]. Bulletin of Polish Academy of Sciences,1985,33(6):693-676.
  • 5Duntsch I,Gediga G. Statistical evaluation of rough set dependency analysis[J]. International Journal of Human-Computer Study, 1997,46(5) : 589- 604.
  • 6Resnick P,Iacovou N,Suchak M,et al.GroupLens:an open architecture for collaborative filtering of netnews[C].In transcending boundaries,proceedings of the computer supposed cooperative workconference.North Carolina,US:UNC Press,1994:175-186.
  • 7Goldberg D,Nichols D,Oki B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 8Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C].In proceedings of the 10th international world wide web conference.Hong Kong,China:ACM Press,2001:285-295.
  • 9Marko Balabanovic,Yoav Shoham.Fab:Content-based,collaborative recommendation[J].Communications of the ACM,1997,40(3):66-72.
  • 10Ghani R,Fano A.Building recommender systems using a knowledge base of product semantics[C].In proceedings of the workshop on recommendation and personalization in e-commerce.Malaga,Spain:IEEE press,2002:120-135.

共引文献225

同被引文献26

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部