期刊文献+

基于数学形态学的海洋浮游植物边缘检测研究 被引量:2

Research of Edge Detection for Marine Phytoplankton Based on Mathematical Morphology
下载PDF
导出
摘要 传统的边缘检测算子由于受噪声影响比较大,无法检测海洋浮游植物细胞可靠的边缘位置,因此不适合应用于细胞形态分析.为此,针对海洋浮游植物细胞原始图像的特点,提出了一种迭代域值算法,数学形态学处理,类异或运算,单像素腐蚀相结合的边缘精确检测算法.通过Visual C++6.0试验结果证明,与传统的边缘检测算法相比较,本文的边缘检测算法不但抗噪声干扰能力强,而且检测精度高,边缘连续,清晰. The traditional edge detection operators cannot detect the exact edge of marine phytoplankton cells because of the relatively large impact of noise, hence, it is not suitable for analyzing the shape of cells. This paper, based on the characteristics of the original images of marine phytoplankton, has proposed a new method which combines iterative a- rithmetic, mathematical morphology, similar XOR and Singal-pixel corrosion, and therefore, can detect the edge more accurately. The trial of Visual C + + 6. 0 has proved that the edge detection algorithm in this paper is not only strongly re- sistant to noise, but also highly precise, continuous, and clear, while compared with the traditional edge detection operators.
出处 《南京师范大学学报(工程技术版)》 CAS 2008年第4期167-172,共6页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金项目(40627001)
关键词 海洋浮游植物 迭代域值 数学形态学 边缘检测 marine phytoplankton, iterative arithmetic, mathematical morphology, edge detection
  • 相关文献

参考文献2

  • 1[8]Kumar S,Ong S H,Ranganath S,et al.A luminance-and contrast-invariant edge-similarity measure[J].IEEE Trans Pattern Anal MachIntell,2006,28(12):2 042 -2 048.
  • 2[9]Serra J,Vincent L.An overview of morphological filtering[J].Circuits System Signal Process,1992.11 (1):47-108.

同被引文献20

  • 1Soille P.形态学图像分析原理与应用[M].2版.王小鹏,译.北京:清华大学出版社,2008.
  • 2CHITRE Y, DHAWAN A P. M-band wavelet discrim ination of natural textures[ J]. Pattern Recognition, 2000.33(11) : 1835 - 1849.
  • 3COIFMAN R R, WIKERHUAUSER M V. Entroy-oused algoritms for best basis election[ J]. IEEE Transactions on Information Theory, 1992,38(3) :713 -718.
  • 4NAJWA V S. On detecting edges [ J]. IEEE Transactions on Pattern Analysis and Matching Intelligence, 1998, 8(6) : 699 - 714.
  • 5CHANG T, KUO C-C. Texture analysis and classification with tree sructured wavelet transform[ J]. IEEE Transactions on Image Processing, 1993, 2(4) : 429 -441.
  • 6Andrei C. Jalba,Michael H, et al. Roerdink,Morphological hat-transform scale spaces and their use in pattern classification [J].Pattern Recognition, 2004,37(5): 901-915.
  • 7Andrei C, Jalba A C,Wilkinson M H F,et al. Shape representa-tion and recognition through morphological curvature scale spaces[J]. Image Processing, 2006,15(2) : 331-341.
  • 8Buf H,Bayer M M. Automatic diatom identification [M]. Singa-pore: World Scientific, 2002.
  • 9Ivica Dimitrovski,Dragi Kocev,Suzana Loskovska, et al. Hier-archical classification of diatom images using ensembles of predic-tive clustering trees [J]. Ecological Informatics, 2012,7 : 19-29.
  • 10姬光荣,郑海永,王国宇,等.一种无角毛类赤潮藻显微图像目标细胞提取方法[P].青岛:中国海洋大学,2010101155923, 2010-03-02.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部