期刊文献+

基于极值优化的综合运输路网连续网络设计双层规划模型 被引量:1

Bi-level Programming Model of Continuous Network Design of a Comprehensive Transportation Network Based on Extremal Optimization
下载PDF
导出
摘要 本文提出了综合交通运输系统路网连续投资配置的双层规划模型,其中上层规划者在投资预算及其他约束条件下,考虑环境污染、土地占用及能源消耗等外部成本,对线路及综合交通运输枢纽做出连续的投资配置,以实现系统最优;下层网络用户在上层规划者的投资配置下,其路径选择满足确定用户平衡原则。最后,基于极值优化设计了求解该模型的算法,并给出了具体算例对算法进行验证。计算结果表明:所建立的模型符合实际情况,且采用的启发式算法也较有效。 This paper proposed a bi-level programming model of continuous investment configuration for a comprehensive transportation network, in which, at the upper level, an investment decision in lines and transportation hubs of a comprehensive transportation system was made to aehieve the system optimum under the investment budget and other constraints including external costs, such as environment pollution, land-use and energy exhaustion: at the lower level, users' paths were chosen in accordance with the deterministic user equilibrium principle. Then, an extremal optimization algorithm to solve the problem was designed, and the algorithm was tested with an example. The result shows that the model can be applied into the reality and the algorithm is valid in the problem.
机构地区 东南大学
出处 《交通运输工程与信息学报》 2008年第4期45-50,共6页 Journal of Transportation Engineering and Information
基金 教育部博士点基金项目(20060286005)
关键词 综合运输系统 双层规划 极值优化算法 Comprehensive transportation system, bi-level programming, extremal optimization algorithm
  • 相关文献

参考文献1

  • 1J. F. Bard. Some properties of the bilevel programming problem[J] 1991,Journal of Optimization Theory and Applications(2):371~378

同被引文献9

  • 1GaoZY, WuJJ, SunHJ bi-level discrete network Solution algorithm for the design problem [ J ]. Transportation Research Part B : Methodological 2005, 39(6) : 479-495.
  • 2Yamada T, Russ B F, Castro J, e! al. Designing muhimodal freight transport networks: a heuristic approach and applications [J]. Science, 2009, 43(2) : 129-143.
  • 3Kim B J, Kim W, Song B H. Sequencing and scheduling highway network expansion using a discrete network design model [ J ]. The Annals of Regional Science, 2008,42(3 ): 621-642.
  • 4Ukkusuri S V, Patil G. Multi-period transportation network design under demand uncertainty[ J ]. Transportation Research Part B: Methodological, 2009, 43 ( 6 ) : 625-642.
  • 5Yang H, Bell M G H. Models and algorithms tbr mad network design: a review and some new developments [J]. Transporl Reviews, 1998, 18(3) : 257-278.
  • 6Byrd R H, Gould N I M, Noeedal J, et al. An algorithm for nonlinear optimization using linear programming and equality eonstrained subproblems [J]. Mathematical Programming, Series B, 2004, 100(1) : 27-48.
  • 7Byrd R H, Gilbert J Ch, Nocedal J. A trust region method based on interior point techniques for nonlinear programming[J]. Mathematical Programming, 2000, 89(1) : 149-185.
  • 8Waltz R A, Morales J L, Nocedal J, et al. An interim' algorithm for nonlinear optimization that combines, line search and trust region steps [ J ]. Mathematical Programming, 2006, 107 ( 3 ) : 391-408.
  • 9赵莉,袁振洲,李之红,许旺土.综合客运通道设计的双层规划模型及算法[J].北京交通大学学报,2009,33(6):36-41. 被引量:2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部