期刊文献+

基于Semi-Supervised LLE的人脸表情识别方法 被引量:1

Facial Expression Recognition Based on Semi-Supervised Local Linear Embedding
下载PDF
导出
摘要 目的为提取有效的鉴别特征和降低鉴别向量的维数来识别人脸表情图像.方法将流行学习(Manifold learning,ML)和半监督学习(Semi-Supervised learning,SSL)结合起来,利用人脸表情图像数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸表情识别.结果该方法能充分利用数据的结构信息和有限的标签信息,使具有标签信息的同类样本之间的距离最小化,不同类数据之间的距离最大化,进而可以有效地提取数据的低维鉴别子流形,使得分类性能要优于非监督的维数约简方法.结论笔者提出的半监督局部线性嵌入算法能有效地提高人脸表情识别的性能. In order to incorporate semi-supervised learning and manifold learning, especially to recognize facial expression, a new semi-supervised manifold learning for facial expression recognition is proposed. This method relied on the distance matrix formed by both labeled and unlabeled samples, and then the local linear embedding (LLE) method was used to extract discriminative manifold features according to the modified distance matrix. The proposed method produces better classification performance which captures the intrinsic manifold structure collectively revealed by labeled and unlabeled samples. Experimental results on public facial expression databases show that the proposed method can improves facial expression classification performance effectively.
出处 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1109-1113,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 重庆市自然科学基金项目(CSTC2006BB2152 CTSC2008B2160)
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸表情识别 manifold learning semi-supervised learning local linear embedding (LLE) dimensionality reduction facial expression recognition
  • 相关文献

参考文献11

  • 1郭凤英,王万森.基于人工情感的脸部表情识别的研究[J].计算机仿真,2006,23(4):204-207. 被引量:5
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3Yang J, Zhang D, Yang J Y. Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics [J]. IEEE Tran. Pattern Analysis and Machine Intelligence, 2007,29 (4) : 650 - 664.
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000,290 (5500) : 2323 - 2326.
  • 5Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000,290 (5500) : 2319 - 2323.
  • 6Okun O, Kouropteva O. Supervised locally linear embedding algorithm [ C]. Finland: FAIC, 2002.
  • 7Belkin M, Niyogi P. Semi - supervised learning on Riemannian manifolds [ J ]. Machine Learning, 2004, 56 : 209 - 239.
  • 8Yang X, Fu H Y, Zha H Y. Semi - supervised nonlinear dimensionality reduction [ C], USA .New York, 2006.
  • 9Belkin M, Niyogi P, Sindhwani V. Manifold regularization-A geometric framework for learning from examples [ J ]. Journal of Machine Learning Research, 2006,7 ( 11 ) : 2399 - 2434.
  • 10杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15

二级参考文献84

共引文献99

同被引文献12

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部