期刊文献+

基于中值背景模型的运动目标自适应检测方法 被引量:5

Adaptive Motion Detection Based on Median Background Model
下载PDF
导出
摘要 目的在保证准确性的前提下,降低运动车辆检测算法的计算量,加快处理速度,满足实时性要求,提出一种基于中值背景模型和自适应阈值的运动检测方法.方法基于当前帧与背景图像的差分图像,利用自适应阈值分别对差分图像的三个颜色通道进行二值化,从而实现运动目标的精确检测.同时,根据检测结果,采用中值更新策略实现背景图像的实时更新.结果实验结果表明,笔者算法可以从复杂交通场景图像序列中有效地检测出运动目标,并且算法计算量小,具有良好的鲁棒性与实时性.算法每帧处理时间比混合高斯降低43%,背景更新时间比一阶Kalman算法降低了45%.结论算法能够很好地满足智能交通监控系统中运动车辆实时检测的要求. In order to decrease the computational cost and promote the processing speed and real-time performance of motion vehicle detection arithmetic with the same accuracy, an algorithm based on median background model and adaptive threshold is proposed. The difference image was got by the current frame subtracting from background image. Then the three color channels of the difference image are respectively binarized to accurately detect moving objects by adaptive threshold. According to the test results, median updating strategy is availed to achieve real-time background update. Experimental results on outdoor image sequences demonstrate that the proposed algorithm can scenes. It has low computational cost, good robustness effectively detect moving objects in complex traffic and real-time performance, and can meet the require- ments of real-time detection of moving vehicles in intelligent transportation surveillance system. The processing time of proposed algorithm reduces 43% comparing with that of the GMM, furthermore, the processing time of the background updating reduces 45 % comparing with that of the first order Kalman filter.
出处 《沈阳建筑大学学报(自然科学版)》 EI CAS 2008年第6期1118-1122,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(60874103)
关键词 车辆 运动目标检测 自适应阈值 背景更新 交通 vehicle motion target detection adaptive threshold background updating traffic
  • 相关文献

参考文献10

  • 1Ivanov Y, Bobick A, Liu J. Fast lighting independent background subtraction[C]//IEEE Workshop on Visual Surveillance. Los Alamitos, CA, USA: IEEE Comput. Soc, 1998:49 - 55.
  • 2韩鸿哲,王志良,刘冀伟,李彬,韩忠涛.基于自适应背景模型的实时人体检测[J].北京科技大学学报,2003,25(4):384-386. 被引量:15
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real - time tracking [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Comput. Soc, 1999,2:246 - 252.
  • 4Elgammal A, Harwood D, Davis L. Non - parametric model for background subtraction [ C ]//Proceedings of the 6th European Conference on Computer Vision. London: Springer - Verlag, 2000 : 751 - 767.
  • 5Tian Y L, Lu M, Hampapur A. Robust and efficient foreground analysis for real - time video surveillance [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Comput. Soc, 2005 : 1182 - 1187.
  • 6Wang Hanzi, David Suter. Background subtraction based on a robust consensus method [ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Comput. Soc, 2006,1 : 223 - 226.
  • 7Meier T, Ngan K N. Video segmentation for content -based coding[J ]. IEEE Trans. on Circuits Systems for Video Technology, 1999,9(8) : 1190 - 1203.
  • 8吴成东,樊玉泉,张云洲,刘濛.基于差分投影与优割字符的车牌字符分割[J].东北大学学报(自然科学版),2008,29(7):920-923. 被引量:13
  • 9夏伟才,曾致远.一种基于卡尔曼滤波的背景更新算法[J].计算机技术与发展,2007,17(10):134-136. 被引量:13
  • 10吴成东,刘文涵,傅小菲,丛明.基于粗网格神经网络的车牌字符识别方法[J].沈阳建筑大学学报(自然科学版),2007,23(4):693-697. 被引量:9

二级参考文献29

共引文献46

同被引文献55

  • 1吴振顺,姚建均,岳东海.模糊自整定PID控制器的设计及其应用[J].哈尔滨工业大学学报,2004,36(11):1578-1580. 被引量:120
  • 2洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 3刘凌云.模糊PID控制在电阻炉炉温系统中的应用[J].中国新技术新产品精选,2007(7):106-107. 被引量:1
  • 4Kim J H, Oh S J. A fuzzy PID controller for nonlinear and uncertain, soft computing [ J ]. A Fusion of Foundations Methodologies and Applications Systems ,2002 (4) : 123 - 129.
  • 5Gu Yongru Wang H O, Tanaka K, et al. Fuzzy control of nonlinear time - delay systems: stability and designissues [ J ]. American Control Conference, 2001,6:4771 - 4776.
  • 6Wang H O, Tanaka K, Griffin M F. An approach to fuzzy control of nonlinear systems:stability and design issues [ J ]. IEEE Transactions on Fuzzy Systems, 1996,4( 1 ) :14 -23.
  • 7ZhiWei W, HungYuan C, JinJye L. A PID type fuzzy controller with self- tuning scaling factors [ J ]. Journal of Fuzzy Sets Systems ,2000,115:321 - 326.
  • 8Tipsuwan Y, Chow M Y. Control methodologies in networked control systems [ J ]. Control Engineering Practice,2003 ( 11 ) :1099 - 1111.
  • 9Zhao W Y,Chellappa R,Phillips P J,et al.Face recognition:a literature survey[J].ACM Computing Survey,2003,35(4):399-458.
  • 10Chellappa R,Wilson C L,Slrohey S.Human and machine recognition of faces:a survey[J].Proc.of the IEEE Transactions on Image,1995,83(5):705-740.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部