期刊文献+

基于肤色和Adaboost算法的人脸检测研究 被引量:4

Face Detection Based on Skin Color and Adaboost Arithmetic
下载PDF
导出
摘要 人脸检测是计算机视觉和人工智能领域中的一项富有挑战性的工作,在虚拟现实、人机交互等很多领域都有广泛的应用。研究了基于Adaboost的人脸检测,并提出了肤色与Adaboost算法相结合的人脸检测方法。对输入的彩色图像进行从RGB空间到YCrCb空间的转换,再结合形态学等方法进行区域肤色分割,排除背景干扰,然后用Adaboost算法对可能区域进行检测,得到人脸位置。实验表明,该方法有较高的准确性和鲁棒性,可以得到满意的检测效果。 Face detection is a challenge in computer vision and artificial intelligence area, and applies in birtual reality, human- computer interaction techniques and so on.Studies the face detection based on Adaboast arithmetic,and presents a face detection method based on skin color and Adaboost arithmetic. First transforms the input color images form RGB space to YCrCb space,then uses morphologic methods to make area skin segmentation,at last uses Adaboost arithmetic to detect the face in the possible area, and gets the face position. The experiments show that this method has high accuracy and robusmess, can get satisfied detect results.
出处 《计算机技术与发展》 2008年第12期44-46,共3页 Computer Technology and Development
基金 江苏省社会发展项目(BS2007048) 南京市软件产业计划项目(2007软资119) 江苏省交通科学计划项目(06C04)
关键词 人脸检测 Adabcost算法 肤色分割 Haar—like特征提取 face detection Adaboost arithmetie skin segmentation Haar - like feature extract
  • 相关文献

参考文献8

  • 1Viola P, JonesRobust M. real-time object detection[R]. Technical Report 2001 /01, Compaq CRL,2001.
  • 2梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 3Freund Y, Schapire R E. Experiments with a new boosting algorithm[ C]//Proc of the 13th International Corderence on Machine Learning. San Francisico: [s. n. ], 1996:148 - 156.
  • 4Papageorgiou C,Oren M, Poggio T. A General Framework for Object Detection[ C] //International Corgerence on Computer Vision ( ICCV' 98). Bombay, India: [ s. n. ], 1998: 555 - 562.
  • 5Paul V, Michael J. Robust Real- time Object Detection[ C]// Second International Worksho on Statistical and Computational Theories of Vision--Modeling, Leaning, Computing, and Sampling. Vancouver, Canada: [ s. n. ] ,2001.
  • 6Viola P,Jones M. Rapid object detection using a boosted cascade of simple features[ C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer S6eiety Corderenee. Kauai, Hawaii: [ s. n. ], 2001:511 - 518.
  • 7Lienhart R, Maydt J. An extended set of Haar - like features for rapid object detection[ C]//Image Processing. 2002. Proceedings. 2002 International Conference. New York, USA: [ s. n. ],2002: 900 - 903.
  • 8Lienhart R, Kuranov A, Pisarevsky V. Empirical analysis of detection cascades of boosted classifiers for rapid object[ C]// in Proceedings of the 25th Pattern Recognition Symposium (DAGM' 03). Magdeburg, Germany: [s. n. ], 2003:297 - 304.

二级参考文献61

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献353

同被引文献39

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部