期刊文献+

一种基于编码的关联规则挖掘算法

An Association Rule Mining Algorithm Based on Code
下载PDF
导出
摘要 关联规则挖掘算法Apriori算法在挖掘频繁模式时需要产生大量的候选项集,多次扫描数据库,时空复杂度过高。针对该算法的局限性,提出了一种通过对项编码来减少扫描数据库次数并通过删除项来减少候选项集的数量,从而提高算法的效率。相同条件下的实验结果表明,优化后的算法能有效地提高关联规则挖掘的效率。 The most typical association rule mining algorithm is Apriori. In the process of mining frequent patterns,Apriori algorithm generates a huge number of candidate itemsets as well as needs multiple scans over database. So the time and space complexity is too high. According to the existing flaws of Apriori algorithm, propose an improved algorithm means of coding for every it^n. Coding can reduce the scans over database and meanwhile deleting items can reduce the number of candidate items. As a result, the efficiency of this algorithm has been imporved. Experiment done under the same conditions show that the advanced algorithm can effectively improve the efficiency of association rules mining.
出处 《计算机技术与发展》 2008年第12期92-94,97,共4页 Computer Technology and Development
基金 安庆市重点科技计划项目(2004-27)
关键词 关联规则 APRIOFI算法 频繁模式 候选项集 association rule Apriori algorithm frequent pattern candidate items
  • 相关文献

参考文献7

二级参考文献23

  • 1郑丽英.基于trie的关联规则发现算法[J].兰州理工大学学报,2004,30(5):90-92. 被引量:3
  • 2Jiawei Han,Micheline Kambr. Data Mining Concept and Techniques, Morgan kaufmann Publix\sher[M].Higer Education press,2000:225~277.
  • 3R Agrawal,T Imielinski,A Suami. Mining association rules between sets of items in large database[C].In:Proc 1993 Acm_SiG MoD Int Conf On Management of Data,Washington,DC,1993:207~166.
  • 4Han J,Pei J,Yin Y.Mining frequent patterns without Candidate Generation[C].In:Proc 2000 AVM-SIGMOD Int Conf on Management of Data, Dallas, Tx, 2000.
  • 5Hu Xiaohua. Knowledge discovery in database:An attribute oriented rough set approach[DJ.University of Regina,Canada,1995.
  • 6R Agrawal ,R Srikant. Fast algorithms for mining association rules[C].In:Proc of the 20th Int'1 Conf on Very Large Data Bases,Chile,Santiago :ACM Press, 1994:487~499.
  • 7Agrawal R,Imielinski T,Swanmi A.Mining association rules between sets of items in large database[A].In Proc of the ACM SIGMOD Conference on Management of Data[C].Washington DC:SIGMOD,1993.207-216.
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules[A].In:Proceedings of the 20th International Conference on Very Large Databases[C].Santiago,Chile:[s.n.],1994.487-499.
  • 9Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Very Large Databases[C].Proceedings of the ACM SIGMOD Conference on Management of Data,Washington,USA,1993-05:207-216.
  • 10Agrawal R,Srikant T.Fast Algorithms for Mining Association Rules in Large Database[C].Proc.of the 20th VLDB Conference,Santiago,Chile,1994:487-499.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部