期刊文献+

PCA-BP算法模块化设计的编程实现 被引量:3

Realizing PCA-BP Algorithm by Modular Design
下载PDF
导出
摘要 BP算法存在收敛性慢、逼近精度差等缺点。因此,在实际应用中往往需要对BP算法进行相应的改进。利用主元分析法(PCA)对数据样本预先进行降维处理,消除数据间的强耦合性,减少模型的复杂性,然后再作为BP的输入样本从而提高模型的解算速度。在此分析的基础上利用Visual Basic采用模块化的设计方法实现对PCA-BP算法的编程,使学习速率能够进行相应自调整和优化,以此来提高BP网络的泛化推广能力,并能够满足设定的误差精度从而达到现场实际运用需要的目的。 Traditional BP algorithm has slow convergence and weak approximability. Therefore,must improve BP algorithm accordingly. Introduces the method that can reduce dimensions of datum by PCA and eliminate the strong coupling metric,reducing complexity of model,the result is the input stylebook of BP in order to improye the speed of calculation.Depending on the base of analysis,can realize PCA - BP algorithm program by Visual Basie,accelerating and optimizating the rate of algorithm learning,in order to improve the generalization and satisfy given error precision reaching to practical application ability of BP network.
作者 贾群
出处 《计算机技术与发展》 2008年第12期98-101,105,共5页 Computer Technology and Development
基金 安徽省高校青年教师科研资助计划项目(2005jql232)
关键词 BP PCA—BP算法 算法编程 BP PCA- BP algorithm algorithm program
  • 相关文献

参考文献5

二级参考文献15

  • 1贾群,廖晓纬,陈帅.OPC技术在过程工业中的应用研究[J].中国仪器仪表,2006(5):72-74. 被引量:8
  • 2罗荣富 邵惠鹤.软测量方法及其工业应用[A]..工业过程模型化与控制[C].上海交通大学出版社,1994.253-260.
  • 3Ravdin pm, ct al. A demonstration that breast cancer recurrence can by predicted by neural network analysis[ J ]. Breast Cancer Restreat, 1991 (21) :47-53.
  • 4Micheh De Laurentiis and Peeter M. Bavdin. Survival analysis of censored data: Neural network analysis detection of complex interactions between varivable[J]. Breast Cancer Resarch and Treament, 1994(32) : 113-118.
  • 5White H. Commentionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mapping[ J ]. Neural Networks, 1990(3).
  • 6Rumelhart D E, McClelland J L, et al. Parallel Distributed Processing[ J ]. Exploitations in the Microstucture of Congenition. London: MIT Press, 1986.
  • 7崔东升.工业控制组态监控软件OPC驱动接口的研究和开发.清华大学硕士学位论文,2000,5.
  • 8李晓虹.OPC技术及实时数据平台软件的研究与开发.中国科学院自动化研究所硕士学位论文,2002,5.
  • 9阎平凡.人工智能专题:人工神经元网络讲义.清华大学,1991.
  • 10HollySys-FacView用户手册.

共引文献22

同被引文献20

  • 1潘昊,王晓勇,陈琼,黄少銮.基于遗传算法的BP神经网络技术的应用[J].计算机应用,2005,25(12):2777-2779. 被引量:46
  • 2郑小霞,钱锋.基于PCA和最小二乘支持向量机的软测量建模[J].系统仿真学报,2006,18(3):739-741. 被引量:33
  • 3杜华英,赵跃龙.人工神经网络典型模型的比较研究[J].计算机技术与发展,2006,16(5):97-99. 被引量:23
  • 4贾群,廖晓纬,陈帅.OPC技术在过程工业中的应用研究[J].中国仪器仪表,2006(5):72-74. 被引量:8
  • 5Wang M H,Wang L K.Mathematical modeling of electrical energy consumption and heating requirements by municipal wamewater treatment plants[J].Journal of Environmental Scierlces,1979,24:23-26.
  • 6Olason G,Andrews J F.Dissolved oxygen control in theactivated sludge process[J].War.Sci.Tech.,1981,13(10):341-347.
  • 7Charpentier J,Florentz M,David G.Oxidation-reduction potential(ORP)regulation:a way to optimize pollution removal and energy savings in the low load activated sludge process[J].War.Sci.Tech.,1987,19:645-655.
  • 8Charpentier J,Godarth,Martin G,et al.Oxidation-reduction potential(ORP)resqdation as a way to optimize aeration and C,N and P removal:experimental basis and various fullscale examples[J].Wat.Sci.Tech.,1989,21:1209-1223.
  • 9Fetter J,Rodrigo M A,Seco A,et al.Energy saving in the aeration process by fuzzy bsic control[J].War.Sci.Technol.,1998,38(3):209-217.
  • 10Bongards M,Ebel A,Hilmer T.Predictivc control of wastewater works by neural networks[C]//Soft.Comp.Ind.Appl.Proc.Biannual World Autom.Cong.Sevilla,Spain:[s.n.],2004:397-102.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部