期刊文献+

优势菌的筛选及其强化活性污泥好氧反硝化的研究 被引量:5

Isolation of dominant bacterial and intensification of aerobic denitrification of activated sludge
下载PDF
导出
摘要 利用含活性污泥提取物的贫培养基筛选SBR系统中的好氧异养优势菌。结合自然温度(15~20℃)、延长培养时间等条件来提高菌群的可培养性。从SBR活性污泥系统中分离出5种细菌。4株去除COD优势菌,1株异养硝化细菌,能在好氧条件下实现对总氮的去除。反应池底采用边缘对称曝气,反应池内细菌在时间顺序和空间位置上循环经历好氧过程及微氧过程。将PVA铝盐法固定的细菌对反应器进行生物强化。结果显示,在好氧工艺的条件下,投加优势菌群后,与未加优势菌群的反应器相比,可以显著改善污泥的沉降性能,COD、NH3-N和TN降解率显著提高,分别达到98%、97%和90%。生物强化作用明显,反应器内具有良好的好氧反硝化环境。 Aerobic heterotrophic bacteria were cultivated using deficient medium with the activated sludge. Cultivability of bacteria communities were effectively improved under the.conditions of the natural temperature( 15 - 20 ℃ ) and prolonged cultivation time, Five strains of dominant bacteria were isolated from activated sludge in the SBR process. Four strains are high effective COD-degrading dominant bacteria, and one strain is the heterotrophic nitrifier which could remove total nitrogen when sufficient oxygen exists. Aeration pipes were laid symmetrically in the bottom of a pond. In the pond, aerobic and anaerobic respiration periodically replace each other, both spatially and temporally. Bacteria immobilized by the method of PVA-aluminate were used for enhancing the SBR process. The results showed that the dominant bacteria in the aerobic process could improve the sedimentation capability of sludge. The degradation rates of COD, NH3-N and TN come up to 98% ,97% and 90% respectively. The effect of biological intensification was obvious and the aerobic denitrification was favorable in the reactor.
出处 《环境工程学报》 CAS CSCD 北大核心 2008年第12期1621-1625,共5页 Chinese Journal of Environmental Engineering
基金 甘肃省自然科学基金(A)资助项目(0710RJZA065)
关键词 贫营养基 好氧异养菌 好氧反硝化 生物强化 poor nourishment aerobic heterotrophic aerobic denitrification biological enhancement
  • 相关文献

参考文献9

二级参考文献49

  • 1王磊,兰淑澄.微生物固定化技术在污水生物脱氮中的应用[J].环境科学,1995,16(6):76-78. 被引量:23
  • 2GB 8978-1996.污水综合排放标准[S].[S].,..
  • 3秦麟源.废水生物处理[M].上海:同济大学出版社,2001.45-50.
  • 4Wijffels R H, et al. Nitrification by immobilized cells[J]. Enzyme Microb. Technol., 1995, 17(4):482-492.
  • 5Uemoto H, Saiki H. Behavior of immobilized nitrosomonas euroaea and paracoccus denitrificans in tubudar gel for nitrogen removal in wastewater [J]. Progress Biotechnology, 11 (immobilized cells),1996, 54(11):486 -493.
  • 6Robertson L A, Kuenen J G. Aerobic denitrification: a controversy revived[J]. Arch Microbiol, 1984,139:351 - 354.
  • 7Lukow T,Diekmann H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1 [J]. Biotechnology letters,1997,11(19) :1 157 - 1 159.
  • 8Pai S L, Chong N M, Chen C H. Potential application of aerobic denitrifying bacteria asbioagents in wastewater treatment [J]. Bioresource Technology, 1999,68:179 - 185.
  • 9Patureau D,Zumstein E,Delgenes J P, et al. Aerobic denitrification isolation from diverse natural and managed ecosystems [J]. Microb Ecol,2000,39:145 - 152.
  • 10Kim Y J, YOSHIZAWA M, TAKENAKA S, et al. Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations [J]. Biosci Biotechnol Biochern, 2002,66 (5): 996 - 1 001.

共引文献97

同被引文献67

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部