期刊文献+

基于RBF神经网络重构模糊PID控制器的研究(英文)

Study on remodeling of fuzzy PID controller based on RBF neural network
下载PDF
导出
摘要 尽管模糊PID控制器具有良好的控制品质,但存在计算复杂和实时性差的问题,为了解决这个问题,利用RBF神经网络逼近能力重构模糊PID控制器,由于重构的RBF神经网络的并行计算能力,这简化了计算复杂性并提高实时性.通过选择不同的给定信号,比较模糊PID控制器和重构的RBF神经网络的控制性能,得到两者的控制效果是相当的.说明重构的RBF神经网络可以取代模糊PID控制器,从而减少了计算复杂性,避免维度灾难并改善控制实时性. Though fuzzy PID controller is characterized by the excellent control quality, there still exists the problems of computation complexity and poor real-time performance. To solve the problems, a known fuzzy PID controller is accurately remodeled based on the universal approximating ability of RBF NN (radial basis function neural network). With parallel computing ability, the remodeled RBF NN can simplify the computation complexity and enhance the real-time performance of fuzzy PID controller. Given the different reference input, the control performances of fuzzy PID controller and remodeled RBF NN are compared. Results show that the control qualities of the two controllers are extremely similar. Thus, the remodeled RBF NN can replace the fuzzy PID controller to reduce the computation complexity, avoid the curse of dimensionality and improve real-time performance.
出处 《海南师范大学学报(自然科学版)》 CAS 2008年第4期420-426,共7页 Journal of Hainan Normal University(Natural Science)
基金 重庆市教委自然科学基金项目(KJ071411)
关键词 模糊PID RBF神经网络 函数逼近 重构 维度灾难 fuzzy PID RBF neural network function approximation remodeling the curse of dimensionality
  • 相关文献

参考文献6

  • 1[1]Zhao Z Y,Tomizuta M,Isaka S.Fuzzy gain scheduling of PID controllers[J].IEEE Tram.on Systems,Man,and Cybernetics,1993,23(5):1392-1398.
  • 2[2]Flip Kom,B U Pagel,Faloutsos C.On the "Dimensionality Curse" and the "Self-similarity Blessing"[J].IEEE.Trans.on Knowledge and Data Engineering,2001,13(1):96-111
  • 3[3]Li T F,Shen Y J,Wang B W.Identification of nonlinear dynamical system by using neural network with multi-output neural model[J].Advances in Systems Science and Applicatious,2004,4(3):456-461.
  • 4[4]Liu J K.Advanced PID control simulation with MATLAB[M].Beijing:Publishing house of electronics industry,2004.
  • 5[5]Chao C T,Chela Y J,Teng C C.Simplification of fuzzy-neural systems using similarity analysis[J].IEEE Tram.On Systems,Man,and Cybernetics,1996,26:344-354.
  • 6[6]Wang Jeen-Shing,Chen Yen-Ping."A Fully Automated Recurrent Neural Network for Unknown Dynamic System Identification and Control"[J].IEEE Tram.on Circttits and Systems-I:regular papers,2006,53(6):1 363-1 372.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部