期刊文献+

基于现场可编程门阵列实现二维光栅优化设计算法

Realization of FPGA-based optimum design of two-dimensional grating
下载PDF
导出
摘要 提出了一种基于现场可编程门阵列实现的遗传算法对二元光栅直接进行二维优化设计的方法。采用二次多项式函数描述二元光栅曲面的面形,给出了基于现场可编程门阵列的遗传算法优化光栅的解决方案;以多项式系数为优化设计对象,选用了适合本设计的硬件实现编码、选择、交叉、变异算子、适应度计算算法,同时引进了精英保存策略来提高程序的健壮性和加快收敛速度。算法充分考虑硬件处理的并行性和流水线特点,利用Verilog HDL语言编程,在Altera的cycloneⅡEP2C50器件上实现。结果表明,该算法对二元光栅优化设计计算速度比软件实现的快四十倍以上,有效提高了二维二元光栅优化设计的速度。 A method of Field Programmable Gate Array(FPGA) - based Genetic Algorithm (GA) for directly optimizing two - dimen- sional (2 - D) binary gratings is proposed. The surface of binary grating is described as a quadratic polynomial function and the solution of grating optimization with FPGA - based GA is given. Taking polynomial function coefficient for the object of optimum, the a- daptive coding, selection, crossover, mutation and the fitness calculation are selected and the elite preservation strategy is introduced to improve the program's robustness and increase the convergence speed. Verilog HDL language is used to program the algorithm after fully considering the parallel and pipeling characteristics of the algorithm, and then the algorithm is implemented in cycloneⅡ EP2C50 of Altera. The results show that the speed of this binary grating optimum design is more than forty times faster than that of realization by software. The speed of 2 - D binary grating optimum design is raised effectively.
出处 《南昌航空大学学报(自然科学版)》 CAS 2008年第3期12-17,共6页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 江西省自然科学基金资助项目(2007GZW1493)
关键词 现场可编程门阵列 遗传算法 二维二元光栅 优化设计 FPGA genetic algorithm two - dimensional binary grating optimum design
  • 相关文献

参考文献7

二级参考文献35

  • 1林舒 科斯特洛.差错控制编码基础和应用[M].北京:人民邮电出版社,1986,12..
  • 2Moharam M G,Grann Eric B,Pomment Drew A,et al. Formulation for stable and efficient implementation of the rigorious couplewave analysis of binary gratings[J].J Opt Soc Am A,1995,12(5):1068-1076.
  • 3Moharam M G,Grann Eric B,Pomment Drew A,et al. Stable implementation of the rigorious couple-wave analysis for surface relief grating:enhanced transmittance matrix approach[J].J Opt Soc Am A,1995,12(5): 1077-1086.
  • 4Lalanne P,Morris G M.Highly improved convergence of the coupled-wave method for TM polarization[J].J Opt Soc Am A, 1996,13(4): 779-784.
  • 5Fabbri G.A genetic algorithm for fin profile optimization[J].Int J Heat Mass Transfer, 1997,40(9):2165-2172.
  • 6Grosz S I,Skigin D C,Fantino A N.Resonant effects in compound diffraction gratings-influence of the geometrical parameters of the surface [J].Phys Rev E, 2002, 65(5):056619.
  • 7Gerritsen H J,Jepsen M L.Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (~95)for unpolarized light[J].Appl Optics,1998,37(25): 5823-5829.
  • 8Bernd Nhammer,Christian David,Jens Gobrecht,et al.Optimized staircase profiles for diffractive optical devices made from absorbing materials[J] .Opt Lett, 2003,28(13): 1087-1089.
  • 9Hessler T,Rossi M,Kunz R E,et al.Analysis and optimization of fabrication of continuous-relief diffractive optical elements[J].Appl Opt, 1998,37(19):4069-4079.
  • 10王小平 曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2001.1-50.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部