期刊文献+

各向异性层合阻尼结构的BP集成神经网络模型设计

Design on the mode of the BP integrated neural network based on the anisotropic laminated damping structure
下载PDF
导出
摘要 本文以各向异性层合阻尼结构为研究对象,设计一种基于BP集成神经网络的智能分析模型。该模型中的集成神经网络由两个子系统神经网络并联融合而成,学习算法主要采用Sigmoid函数。同时,该模型设计针对各向异性层合阻尼结构参数的扰动性问题综合采用结构模式归类、学习算法的改进、小波分析方法予以处理。计算结果表明:该BP集成神经网络模型,较好地解决了各向异性层合阻尼结构参数的扰动性问题,并能有效量化结构参数的变化影响。 This paper studies the anisotropic laminated damping structure by a kind of BP integrated neural network, which is made up of two subsystems of neural network. However, the learning method adopts Sigmoid function. At the same time, the design adopts three methods of structure classification, improved arithmetic, and the wavelet analysis for resolving the mutual disturbance of structure parameters. The calculated result shows that the mode based on the BP integrated neural network can resolve the disturbance of structure parameters and quantitatively analyse the changes of structure parameters.
作者 叶皓 李明俊
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2008年第3期18-21,30,共5页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 校科研课题学院基金(EC200602048)
关键词 各向异性结构 集成神经网络 BP算法 SIGMOID函数 anisotropic structure integrated neural network BP arithmetic Sigmoid function
  • 相关文献

参考文献5

二级参考文献19

  • 1郑辉,陈端石,骆振黄.基于三维弹性理论的约束阻尼结构振动阻尼特性分析[J].应用力学学报,1996,13(2):13-21. 被引量:6
  • 2Barrett DJ. An anisotropic laminated damped plate theory[R]. AD-A234 446/3. NADC-90066-60,1990. 1-59.
  • 3Morlet J, Arens G, Fourgeau I, etal. Wave propagation and sampling theory [J]. Geophysics, 1982, 47(2):203-236
  • 4Erdol N and Basbug F. Wavelet transforn based adaptive filters: Analysis and newresults [ J]. IEEE Trans. Signal Processing, 1996,44(9) :2163 - 2171
  • 5Zhang Q andBenvenisteA. Waveletnetworks[J]. IEEE Trans.Neural Networks, 1992, 3(6):889- 898
  • 6Pati Y C and Krishnaprasad P S. Analysis and synthesis of feed-forward neuralnetworks using discrete affine wavelet transformations [J]. IEEE Tranal. Neural Networks,1993, 4(1):73-85
  • 7Zhang-J, Walter G, Mian Y, et al. Wavelet neural networks for function learning[J]. IEEE Trans. Signal Processing, 1995, 43(6): 1485 - 1497
  • 8Delyon B, Juditsky A and Beavenviste A. Accuracy analysis for velet approximation[J]. IEEE Trans. Neural Networks, 1995, 6(2): 332-348
  • 9Danbechies I. Ten Lectures on Wavelets [ M]. Philadelphea, PA, USA: SIAM Press,1992
  • 10Kugarajah T and Zhang Q. Multidimensional wavelet frames [J]. IEEE Trans. NeuralNetworks, 1995, 6(6): 1552-1556

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部