期刊文献+

自适应动态演化粒子群算法在Web主题信息搜索中的应用 被引量:4

Application of Focused Crawler Using Adaptive Dynamical Evolutional Particle Swarm Optimization
原文传递
导出
摘要 针对传统的基于单一价值评价的网络爬虫搜索策略存在的不足,提出了一种基于自适应动态演化粒子群(adaptive dynamical evolutional particle swarm optimization,ADEPSO)的启发式网络爬虫搜索算法。本算法综合立即价值和未来价值两种链接评价方法,并依据链接价值所反映的Web实际搜索情况动态调整两种价值的关系,使网络爬虫能更准确地预测页面的重要性。实验表明,该算法具有较高的搜索效率。 Aiming at the disadvatages of traditional topic crawler which uses monistic searching strategy, a new heuristic searching algorithm based on adaptive dynamical evolutionary PSO is proposed, which combines the advantage of linkage's immediate rewards and future rewards to valuate linkages together. The author utilizes the changes of rewards to speculate about how relevant the candidate page-set is to topics based on which the crawler can dynamically adjust the relationship between these two rewards. The experimental results show that this algorithm has better performance compared with traditional algorithms.
作者 童亚拉
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第12期1296-1299,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(6047014) 湖北工业大学基金资助项目(200601)
关键词 网络爬虫 自适应动态演化粒子群 立即价值 未来价值 topic crawler adaptive dynamical evolutional particle swarm optimization immediate rewards future rewards
  • 相关文献

参考文献9

  • 1Hersovici M, Heydon A, Mitzemacher M. The Shark search Algorithm An Application:Tailored Web Site Mapping[C]. World Wide Web Conference, Toronto, Canada, 1998.
  • 2Srinivasan P, Pant G, Menczer F, et al. Target See-king Crawlers and Their Topical Performance[C]. SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland,2002.
  • 3Sutton R S, Barto A G. Reinforcement Learning: an Introduction[M]. MA: MIT Press, 1998.
  • 4唐志,王成良.遗传算法在主题Web信息采集中的应用研究[J].计算机科学,2006,33(7):71-74. 被引量:5
  • 5Li Yuanxiang, Zou Xiufen. Solving Global Optimal Problems by Using a Dynamical Evolutionary Algorithm[C]. The 5th International Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 2002.
  • 6Zheng Binbin, Li Yuanxiang, Shen Xianjun. A New Dynamic Particle Swarm Optimizer[C]. The 6th International Conference Simulated Evolution and Learning, Hefei, China, 2006.
  • 7Rennie J, Mccallum A. Using Reinforcement Learning to Spider the Web Efficiently[C]. The In ternational Conference on Machine Learnin, Bled, Slovenia, 1999.
  • 8Imperial College Department of Computing.免费在线计算字典[OL].http://www.foldoc.org/.2003.
  • 9Menczer F, Pant G, Srinivasan P. Topic Web Crawlers: Evaluation Adaptive Algorithms [ M]. New York: ACM Press, 2003.

二级参考文献20

  • 1Menezer F,Pant G, Ruiz M, et al. Evaluating Topic-Driven Web Crawlers [A]. In:Proceedings of 24th Annual International ACMSIGIR Conference on Research and Development in Information Retrieval [C], 2001. 241-249
  • 2Ester M, Grob M, Kriegel H. Focused Web crawling: a generic framework for specifying the user interest and for adaptive crawling strategies[A]. In: Proceedings of 26th International Conference on Very Large Database(VLDB'01)[C], 2001. 527-534
  • 3Eichmann D. Ethical Web Agents. In.. Proceedings of the 2nd International World Wide Web Conference, Chicago, Illinois, USA,1994
  • 4Cho J. Crawling the Web.. Discovery and maintenance of largescale Web data [D]. Department of Computer Science, Stanford University, 2001
  • 5Hersoviei M, Heydon A, Mitzenmaeher M, et al. The sharksearch algorithm -An application: Tailored Web site mapping[A]. In:Proceedings of 7th International World Wide Web Conference [C], 1998. 317-326
  • 6Borodin A,Roberts G O,Rosenthal J S,et al. Finding Authorities and Hubs From Link Struetures on the World Wide Web [A]. In:Proceedings of 10th International world Wide Web Conference,ACM, 2001. 415-419
  • 7Cho J,Gareia-Molina H,Page L. Efficient crawling through URL ordering [J]. Computer Networks, 198,30(1-7) : 161-172
  • 8Rennie J, McCallum A. Using reinforcement learning to spiderthe Web efficiently [A]. In: Proceedings of the International Conference on Machine Learning(ICML 99)[C], 1999. 335-343
  • 9McCallum A, Nigam K, Rennie J, et al. Building Domain-Specific Search Engines with Machine Learning Techniques [A]. AAAI-99 Spring Symposium on Intelligent Agents in Cyberspace [C],1999
  • 10Gibson D, Kleinberg J, Raghavan P. Inferring Web Communities from Link Topology. In: Proc. of the 9th ACM Conference on Hypertext and Hypermedia, Pittsburgh, Pennsylvania, USA, 1998

共引文献4

同被引文献30

引证文献4

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部