期刊文献+

椭圆曲线密码SOC的研究与设计 被引量:2

Research and design of elliptic curve cryptosystem SOC
下载PDF
导出
摘要 通过分析椭圆曲线密码体制,比较软、硬件模块结构,对软硬件接口进行划分,提出了一种适合椭圆曲线公钥密码运算和满足实际产品需求的简单高效SOC架构,并讨论了设计、验证、实现以及软件系统的开发,成功完成了一款完全符合椭圆曲线密码体制及其安全标准的SOC芯片.椭圆曲线密码SOC采用HHNEC0.25μm制造工艺,实际芯片在59 MHz下的测试表明,192 bit非固定点乘运算性能为456次/s,256 bit非固定点乘运算性能为232次/s. The research and design of an elliptic curve cryptosystem SOC(system on chip) is presented in this paper. By analyzing elliptic curve cryptosystem standard and comparing the architecture of software and hardware, the tradeoff between software and hardware is decided, and a kind of SOC chip architecture suitable for public key cryptosystem and actual product requirements is proposed, then the design, verification, implementation and kernel software development are elaborated further. This chip is fabricated with HHNEC 0.25 μm technology. When running in 59 MHz, the final real chip can execute 456 operations per second for 192 bit unknown point multiplication and 232 operations per second for 256 bit unknown-point multiplication.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期52-55,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家高技术研究发展计划资助项目(2001AA1.41010)
关键词 密码 椭圆曲线 公钥 单片系统 点乘 cryptography elliptic curve public key SOC point multiplication
  • 相关文献

参考文献6

  • 1Garrett P.密码学导引[M].吴世忠,宋晓龙,等译.北京:机械工业出版社,2006.
  • 2Hankerson D, Menezes A, Vanstone S. Guide to el- liptic curve cryptography[M]. Germany: Springer- Verlag, 2004.
  • 3Brown M, Hankerson D,Lopez J, et al. Software implementation of the NIST elliptic curves over prime fields[D]. Waterloo: Centre for Applied Cryptographic Research (CACR), University of Waterloo,2000.
  • 4Knudsen P V,Madsen J. Integrating communicating protocol selection with partitioning in hardware/soft- ware codesign[EB/OL]. [2007-07-03]. http://citeseer. ist. psu. edu/article/madsen 98 integrating. html.
  • 5Farzad Nekoogar, Faranak Nekoogar. From ASICs to SOCs. NJ: Prentice Hall Professional Technical Reference, 2003, 78-91.
  • 6Ji Hongbing, Sun Tao. CCore SOC design platform [EB/OL]. [2007-07-03]. http: //www. china-core. com/support/techdata, php. June. 2007.

同被引文献19

  • 1沈昌祥.关于加强信息安全保障体系的思考[J].中国计算机用户,2002(45):37-37. 被引量:9
  • 2IEEE P1363. Standard for public- key cryptography: working draft[EB/OL]. 2000-08-01. http://www. secg. org.
  • 3Sunar B, Koc C K. An efficient optimal normal basis type Ⅱ multiplier[J]. IEEE Transactions on Computers, 2001, 50(1): 83-87.
  • 4Menezes A J. Applications of finite fields[M]. Boston: Kluwer Academic Publishers, 1993.
  • 5Omura J, Massey J. Computational method and apparatus for finite field arithmetic, US Patent, No. 4587627. 1983-06-08.
  • 6Dl R L, Iederreiter H N. Introduction to finite fields and their applications[M]. England: Cambridge University Press, 1994.
  • 7Bbleyd, Paar C. Optimal extension fields for fast arithmetic in public[J]. Key Algorithms Advances in Cryptography, 1998, 270(1 462): 472-485.
  • 8Hasan M A, Wang M Z, Bhargava V K. A modified Massey-Omura parallel multiplier for a class of finite fields[J]. IEEE Transactions on Computers, 1993, 42(10): 1 278-1 280.
  • 9Koc C K, Sunar B. Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields [J]. IEEE Transactions on Computers, 1998, 47(3): 353-356.
  • 10AL-SOMANI T F, KHAN E A, QAMAR-UL-ISLAM A M, et al. Hardware/Software co-design implementation of elliptic curve ccryp- tosystems[ J]. Information Technology Journal, 2009, 8 (4) : 403 - 410.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部