期刊文献+

基于非线性动力学特性的控制设计策略

A strategy on control design base on nonlinear dynamics characteristic
下载PDF
导出
摘要 通过对动力学中的非线性现象及其控制方法的探讨,研究了动力学中的非线性分岔特性,以经典的倒立振子/台车系统为例,考虑系统非线性特性,当控制变量的偏差大于某一值时,线性反馈控制难以使系统回复到原平衡位置.针对变结构控制的特点,基于动力系统中的非线性分岔特性和中心流形理论,提出了一种基于非线性的全局稳定的变结构控制策略,并可构造出相应的变结构控制器.以极限环及不稳定焦点为例进行了数值仿真,结果表明该控制设计策略具有良好的全局稳定性. The nonlinear phenomena of dynamics and its control method were discussed. A bifurcation characteristic of nonlinear dynamics was investigated. Taking classical trolley system with bandstand as an example, considering nonlinear characteristic of the system, the linear feedback control was difficult to ensure the system revert to original balance position if the warp of control variables were larger than a fixed value. In allusion to sliding mode variable structure control system, based on bifurcation characteristic of nonlinear dynamics and centre manifodes theory, a strategy on variable structure control design of nonlinear complete stabilization was put forward, and corresponding controller can be constructed. Taking limit ring and instability focus for example, the control system was simulated. The research results revealed that the strategy on control design had favorable complete stabilization.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期87-90,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 非线性动力学 全局稳定 分岔特性 极限环 不稳定焦点 控制设计 nonlinear dynamics complete stabilization bifurcation characteristic limit ring instabili ty focus control design
  • 相关文献

参考文献9

  • 1Bezzo F, Macchietto S, Pantelides C C. General framework for the integration of computational fluid dynamics and process simulation[J]. Computers and Chemical Engineering, 2000, 24(2): 653-658.
  • 2Bae D S, Han J M. An implementation method for constrained flexible multibody dynamics using a virtual body and joint[J]. Multibody System Dynamics, 2000, 4(4): 297-315.
  • 3赵维加,潘振宽,王艺兵.多体系统动力学微分/代数方程约束误差小扰动自我稳定方法[J].应用数学和力学,2000,21(1):94-98. 被引量:13
  • 4Liu Zengrong, Chung K W. Hybrid control of bifurcation in continuous nonlinear dynamical systems [J]. International Journal of Bifurcation and Chaos, 2005, 15(12): 3 895-3 903.
  • 5Venkatesan A, Parthasarathy S, Lakshmanan M. Occurrence of multiple period-doubling bifurcation route to chaos in periodically pulsed chaotic dynamical systems[J]. Chaos, Solitons and Fractals, 2003, 18(4) : 891-898.
  • 6蒋炎坤.机械系统动力学数字化建模及应用研究[D].武汉:华中科技大学机械科学与工程学院,2001.
  • 7蒋炎坤.倒立振子台车系统的非线性特性研究[J].武汉理工大学学报,2005,27(3):80-83. 被引量:1
  • 8Littleboy D M, Simith P R. Using bifurcation methods to aid nonlinear dynamic inversion control law design[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(4): 632-638.
  • 9Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcation of vector fields [M]. New York: Springer-Verlag, 1983.

二级参考文献6

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部