摘要
Bernoulli方程是《常微分方程》中的一个重要非线性方程,在分析现有参考文献对Bernoulli方程解法研究的基础上,提出了一种新的方法——函数变换法.通过实例说明该方法的可行性,同时这种方法也对一阶线性非齐次微分方程同样适用,并且还为求解某些线性(甚至非线性)偏微分方程提供一些有价值的研究思路.
Bernoulli equation is one of the most important nonlinear equations in Ordinary differential equation. By analyzing the methods of solving this kind of equation sufficiently in the recent research, derived a new method, function transform method, and proved the feasibility of this method is proved by example. At the same time, pointed out that this method is also applicable for the non-homogeneous linear differential equation of first order. Moreover, this method provides valuable means for solving some certain of LPDEs ( even NLPDEs ).
出处
《高师理科学刊》
2008年第6期10-12,共3页
Journal of Science of Teachers'College and University
基金
西南科技大学教改项目(21907xn01-57)
关键词
BERNOULLI方程
常数变易法
积分因子法
变量代换法
函数变换法
Bernoulli equation
variation of constants method
integrating factor method
substituting variables method
function transform method