期刊文献+

求解互补约束优化问题的松弛法

A Relaxation Method for Mathematical Programs with Complementarity Constraints
下载PDF
导出
摘要 给出求解互补约束优化问题(MPCC)的松弛法,并研究其松弛问题的稳定点的收敛性质.在MPCC-LICQ的条件下,松弛问题的稳定点的任何聚点都是原问题的C-稳定点.若松弛问题的Lagrange函数的Hessian矩阵在相应的切空间一致下有界,则聚点是M-稳定点.若Hessian矩阵的最小特征值有界,则聚点是B-稳定点. A relaxation method for mathematical program with complementarity constraints is given. The convergence behavior of a sequence of stationary points of the relaxed problems is considered. Any accumulation point of stationary points of relaxed problems is C-stationary point of MPCC under MPCC linear indenpendence constraint qualification,and if the Hessian matrices of the Lagrangian functions of the relaxed problems are uniformly bounded below on the corresponding tangent space, it is M-stationary. Moreover if the small eigenvalue of the Hessian matrices is bounded below,it is B-stationary.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期620-627,共8页 Journal of Inner Mongolia University:Natural Science Edition
基金 高等学校骨干教师资助计划项目 内蒙古自治区优秀学科带头人资助项目
关键词 互补约束优化问题 B-稳定点 弱二阶必要条件 mathematical program with complementarity constraint B-stationary point weak second-order necessary condition
  • 相关文献

参考文献8

  • 1Luo Z Q.Pang J S, Ralph D. Mathetatical programs with equilibrium contraints [M]. Cambridge:Cambridge University Press, 1996.
  • 2Scheel H,Scholtes S. Mathematical programs with complementarity constraints [J]. Math. Oper. Res. ,2000, 25: 1-22.
  • 3Chen Y, Florian M. The nonlinear bilevel programming problem: formulations, regularity and optimality conditions [J]. Optimization, 1995,32 : 193 - 209.
  • 4Fukushima M.Pang J S. Convergence of a smoothing continuation method for mathematical problems with complementarity constraints [A]. Ill-posed Variational Problems and Regularization Techniques,Lecture Notes in Economics and Mathematical systems [C]. Berlin/Heidelberg :Springer-Verlag. 1999.
  • 5Scholtes S. Convergence properties of a regularization scheme for mathematical programs with complementarity constraints [J]. SIAM J. Optim. ,2001,11:918-936.
  • 6Lin G H, Fukushima M. A modified relaxation scheme for mathematical programs with complementarity constraints [J]. Anna. Oper. Res. , 2005,133 : 63-84.
  • 7Scheel H, Scholtes S. Mathematical program with complementarity constraints: stationarity, optimality and sensitivity [J].Math. Oper. Res. ,2000,25:1-22.
  • 8Pang J S,Fukushima M. Complementarity constraint qualifications and simplified stationarity conditions for mathematical programs with equilibrium constranits [J]. Comput. Optim. Appl. , 1999,13:111 - 136.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部