期刊文献+

用神经网络和ANFIS模拟污水生物处理过程 被引量:4

Simulation of Wastewater Biotreatment Process by Using Neural Network and ANFIS
下载PDF
导出
摘要 为了对污水生物处理过程进行有效的控制,首先要对该过程进行模拟以分析其动态特性。神经网络和ANFIS同样具有以任意精度逼近任何线性或非线性函数的功能,可以作为污水生物处理过程建模的工具。通过对深圳盐田污水处理厂的模拟发现:当采用实际运行数据作为模型的训练样本时,对样本进行适当的筛选处理是非常必要的;训练样本相同时,用ANFIS进行模拟则对出水COD和NH3-N的预测误差比用BP神经网络进行模拟的误差分别低79.7和86.8;在同样的预测精度下,用ANFIS模拟所需的训练样本数可比用神经网络的少很多。 For the effective control of wastewater biotreatment process, the process simulation should be firstly carried out to analyze the dynamic characteristics of the process. Neural network and ANFIS can both be used to approach linear or non-linear functions with any precision and can be used as tools of simulating wastewater biotreatment process. Simulation of Yantian Wastewater Treatment Plant indicates that it is very important to screen the sample data when using practical running data of wastewater treatment plant as training data. With the same sample data, the forecast errors for effluent COD and NH3 -N by using ANFIS are less than that by using neural network by 79.7% and 86.8% respectively. In order to get same forecast precision, less sample data are required by ANFIS than by neural network.
作者 吴灿东
出处 《中国给水排水》 CAS CSCD 北大核心 2008年第23期102-104,共3页 China Water & Wastewater
关键词 神经网络 ANFIS 污水 生物处理 模拟 neural network ANFIS wastewater biotreatment simulation
  • 相关文献

参考文献1

二级参考文献1

共引文献152

同被引文献17

  • 1Schoder K, Hasanovic A,Feiachi A,et al.PAT: a power analysis tooltox for Mailab/Simulink. IEEE Trans Power Syst ,2003, !8(1) :42 - 47.
  • 2Hua Bai, Lixin Can, Guibai Li. Neural networks based optimum coagulation dosing rate control applied to water purification system. Intelligent Control and Automation, 2002. Proceeding of the 4th World Congress on, 2002, Vol. 2:1 432 - 1 435.
  • 3Cox C,Fletcher I, Adgar A. ANN- based sensing and control developments in the water industry: a decade of innovation, Intelligent Control, 2001. (ISIC '01). Proceedings of the 2001 IEEE International Symposium on, 5-7 Sept. 2001: 298-302.
  • 4丹宝宪仁,小笠原绂一,包方成译.日本现代净水技术.吉林科学技术出版社,1992.
  • 5Hua Bai,Lixin Gao,Cuibai Li.Neural networks based optimum coagulation dosing rate control applied to water purification system.Proceedings of the World Congress on Intelligent Control and Automation (WCICA),2002,2:132 -1435.
  • 6Cox C,Fletcher I,Adgar A.ANN-based sensing and control developments in the water industry:A decade of innovation.IEEE International Symposium on Intelligent Control-Proceedings,2001,9:298-302.
  • 7Chiu S.L.Cluster extension method with extension to fuzzy model identification.IEEE International Conference on Fuzzy Systems,1994,2:1240-1245.
  • 8Juan R. Castro, Oscar Castillo, Patricia Melin, et al. A hybrid learning algorithm for a class of interval type- 2 fuzzyneuralnetworks [J]. Information Sciences. 2009, 179(13): 2175-2193.
  • 9Wang N, Meng Er J, Meng X. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks [J]. Neurocomputing. 2008, 72: 3818-3829.
  • 10Deng X, Wang X. Incremental learning of dynamic fuzzy neural networks for accurate system modeling [J]. Fuzzy Sets and Systems. 2009, 160(7): 972-987.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部