摘要
本文研究奇摄动积分微分方程组边值问题:其中ε为正的小参数,Tx为定义在[0,1]上的积分算子,x、g、x0和x1为n维向量函数,f(t,ε)为n×n矩阵。在适当的条件下利用对角化方法证明了解的存在性,构造出解的渐近展开式并给出了余项的估计。
In this paper, the singular perturbation of boundary value problem for the quasilinear integro-differential equation systems:εx″=f(t,ε)x′+g(t,x,Tx,ε) x(0,ε)=x^0(ε), x(1,ε)=x^1(ε)
is considered, where ε is a positive small parameter, Tx is integral operator defined in [0, 1], x,g,x^0 and x^1 are n-dimension vector functions, f(t, ε) is n×n matrix. Under the appro- priate assumptions, using the diagonalization method, the existence of solution is proved and a asymptotic expansion of the solution is constructed and the estimate of the remainder term is given.
出处
《漳州师院学报》
1997年第4期8-15,共8页
Journal of ZhangZhou Teachers College(Philosophy & Social Sciences)
基金
福建省自然科学基金
关键词
奇摄动
积分微分方程组
边值问题
拟线性
singular perturbation, integro-differential equation system, boundary value problem, asymptotic expansion