摘要
点赋权图Gw=(V,E,W)是指对简单图G的顶点集作一个赋权函数W:V→R^+。在图G所有的控制集D V(G)(V(G)/D中的任意顶点v都与D中的点关联)中最小的权和W(D)称为图Gw的赋权控制数。记作γw(Gw)。证明了对基数为N,平均权为W^-的图Gw,其赋权控制数γw(Gw)≤Nw^-1δ+1^——1+1n(δ+1)。
A weighted graph Gw=(V,E,W) is a graph G together with a positive weight-funetion on its vertex set W:V→R^+. The weighted domination number γw (Gw) of Gw is the minimum weight W(D) of a set D V(G) such that every vertex v∈ V(D)/D has a neighbor in D. This paper shows that γw(Gw)≤Nw^δ+1——1+1n(δ+1)for a weighted graph Gw of order Nand average weight w^1.
出处
《新乡学院学报》
2008年第1期1-2,共2页
Journal of Xinxiang University
关键词
赋权图
控制数
赋权控制数
weighted graph
domination number
weighted domination number