期刊文献+

分段线性光谱分类器的优化算法设计

Optimizing Algorithm Design of Piecewise Linear Classifier for Spectra
下载PDF
导出
摘要 快速准确地识别污染气体种类是光谱法环境监测技术对分类器的基本要求。分段线性分类器简单、计算量小,可以较好的逼近非线性分界面。文章根据最大化分类间隔的思想,结合分段线性分类器和线性支持向量机,设计了单边分段线性分类器优化算法。对某气体模拟剂光谱的分类实验表明,经过优化算法训练的分段线性分类器可以用较少的超平面逼近非线性分界面,而且得到更高的识别准确率。 Being able to identify pollutant gases quickly and accurately is a basic request of spectroscopic technique for envirment monitoring for spectral classifier.Piecewise linear classifier is simple needs less computational time and approachs nonlinear boundary beautifully.Combining piecewise linear classifier and linear support vector machine which is based on the principle of maximizing margin,an optimizing algorithm for single side piecewise linear classifier was devised.Experimental results indicate that the piecewise linear classifier trained by the optimizing algorithm proposed in this paper can approach nonolinear boundary with fewer superplanes and has higher veracity for classification and recognition.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第11期2726-2729,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(60678056)资助
关键词 分段线性 光谱分类器 优化算法 线性支持向量机 Piecewise linear,Spectral classifier,Optimizing algorithm,Linear SVM
  • 相关文献

参考文献8

二级参考文献24

  • 1熊伟,方勇华,荀毓龙,黄烨,黄斌.傅里叶变换红外光谱信息处理中的波数校正[J].量子电子学报,2005,22(2):165-168. 被引量:8
  • 2方勇华,荀毓龙,乔延利,汪元钧.气体遥感红外光谱数据的识别分类[J].量子电子学报,1997,14(3):277-283. 被引量:2
  • 3吴谨光.近代傅里叶变换红外光谱技术及应用[M].北京:科学出版社,1994.136-134.
  • 4Andreas BEIL,Rainer DAUM.Remote sensing of atmospheric pollution by passive FTIR spectrometry[J].SPIE,1998,3493:32-43.
  • 5GRIFFITHS P R,de HASETH J A.Fourier Transform Infrared Spectrometry[M].New York:Wiley Press,1986.350-400.
  • 6D F FLANIGAN.Detection of organic vapors with active and passive sensors:a comparison[J].Appl.Opt,1986,25(23):4253-4260.
  • 7P R GRIFFITHS,de HASETH J A.Fourier Transform Infrared Spectrometry[M].New York:A wiley-interscience publication John wiley & Sons,1986.338.
  • 8Veropoulos K, Cambell C, Cristianini N. Controlling the sensitivity, of support vector machines [C]. Proceedings of the International Joint Conference on AI, 1999:55 - 60.
  • 9John C Platt. Sequential Minimal Optimization: A Fast Algorithm for training Support Vector machines[R]. Technical Reports MSR- TR-98 - 14, April, 1998.
  • 10孙延奎.小波分析与应用[M].北京:机械工业出版社,2005.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部