期刊文献+

双组分纳米流体导热系数研究 被引量:2

Study of thermal conductivity of binary nanofluids
下载PDF
导出
摘要 采用共混法在氨水中制备了稳定的碳纳米管颗粒悬浮液(双组分纳米流体),并利用瞬态热丝法测量了不同条件下的双组分纳米流体的导热系数,系统研究了颗粒质量分数、氨水质量分数、温度等因素对双组分纳米流体导热系数的影响.实验结果表明,碳纳米管的加入极大地提高了基础液体-氨水的导热系数.在此基础上,结合已有文献中关于纳米流体导热系数的计算模型对双组分纳米流体的导热系数进行了模拟计算,并对模拟数据和实验数据进行了对比.结果发现,通过对模型参数的调整,微对流模型可以准确计算双组分纳米流体的导热系数. Carbon nanotubes-ammonia nanofluids ammonia by two steps method. And the thermal (the binary nanofluids) were prepared in aqueous conductivities of nanofluids were measured by the transient hot-wire method. The effects of the mass fraction of carbon nanotubes (CNTs), the concentration of ammonia and temperature on the thermal conductivity of the binary nanofluids were sy th stematically studied. The results show that the addition of CNTs can ermal conductivity of the base liquid-aqueous ammonia. On the basis, the sig th nificantly enhance the ermal conductivities of the binary nanofluids were calculated using the models in the literatures, and were compared with the experimental values. The results show that the micro-convection models can predict the thermal conductivity of the binary nanofluids through adjusting the parameters in the models.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第6期781-785,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50476072) 教育部新世纪优秀人才基金资助项目(NCET-05-0280)
关键词 双组分纳米流体 导热系数 氨水 碳纳米管 瞬态热丝法 binary nanofluidsl thermal conductivity aqueous ammonia carbon nanotubes transient hol-wire method
  • 相关文献

参考文献9

  • 1CHOI U S. Enhancing thermal conductivity of fluids with nanoparlicles [C] // SINGER D A, WANG H P. Development and Application of Non-Newtonian Flows. New York:ASME. 1995
  • 2KEBLINSKI P, EASTMAN J A. CAHILL D G. Nanofluids for thermal transport[J].Materials Today, 2005, 8(6) :36-44
  • 3KRISHNAMURTHY S, BHATTACHARYA P, PHELAN P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letter, 2006, 6(3):419-423
  • 4KIM J K, JUNG J Y, KANG Y T. The effect of nano-particles on the bubble absorption performance in a binary nanofluid[J]. International Journal of Refrigeration, 2006, 29 : 22-29
  • 5李强,宣益民.纳米流体热导率的测量[J].化工学报,2003,54(1):42-46. 被引量:50
  • 6MAXWELL J C. A Treatise on Electricity and Magnetism: 2nd ed[M]. Cambridge: Oxford University Press. 1904 : 435-441
  • 7HAMILTN R L, CROSSER O K. Thermal conductivity of heterogeneous two-component systems [J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1: 187-191
  • 8PRASHER R, BHATTACHARYA P,PHELAN P E. Thermal conductivity of nanoscale colloidal solutions(nanofluids) [J]. Physical Review Letters, 2005, 94:025901-1-4
  • 9CHON C H, KIHM K D, LEE S P, et al. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement[J].Applied Physics Letter, 2005, 87: 153107-1-3

二级参考文献8

  • 1[1]Eastman J A,Choi U S,Li S,Thompson L J,Lee S.Enhanced Thermal Conductivity Through the Development of Nanofluids.In: Komarneni S,Parker J C,Wollenberger H J, eds. Proceedings of the Symposium on Nanophase and Nanocomposite Materials.Boston: Materials Research Society, Pittsburgh, PA, 1997. 3-11
  • 2[2]Xuan Y,Li Q.Heat Transfer Enhancement of Nanofluids.Int. J. of Heat and Fluid Flow, 2000, 21(1): 58-64
  • 3[3]Lee S, Choi U S, Li S, Eastman J A. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles.J. of Heat Transfer, 1999, 121: 280-289
  • 4[4]Eastman J A, Choi US, Li S. Development of Energy-efficient Nanofluids for Heat Transfer Applications.Report of Argonne National Laboratory
  • 5[5]Lee S,Choi U S.Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems.In: Kwon Y,Davis D,Chung H, eds. Recent Advances in Solids/Structures and Application of Metallic Materials.PVP-vol.342/MD-vol.72. New York: ASME, 1996.227-234
  • 6[6]Carslaw H S, Jaeger J C. Conduction of Heat in Solids.2nd ed. London: Oxford University Press, 1959. 510
  • 7[7]Maxwell J C. A Treatise on Electricity and Magnetism. 2nd ed. U K: Clarendon Press, 1881. 435
  • 8[8]Hamilton R L, Crosser O K.Thermal Conductivity of Heterogeneous Two-component Systems.Industrial and Engineering Chemistry Fundamentals, 1962, 1(3): 187-191

共引文献49

同被引文献19

  • 1丰平,熊惟皓.纳米TiN粉末在水溶液和无水乙醇中的分散行为[J].过程工程学报,2005,5(1):62-65. 被引量:7
  • 2郑丹星,邓文宇,金红光.GAX循环的α-h图热力学分析[J].工程热物理学报,2005,26(3):369-372. 被引量:7
  • 3吴业正.空调用溴化锂吸收式制冷机[M].北京:中国建筑工业出版社,1996:130-140.
  • 4过增元,黄素逸.场协同原理与强化传热新技术[M].北京:电力工业出版社,2004.
  • 5Kim J K,Jung JY,Kim J H,et al.The effect of chemical surfactants on the absorption performance during NH3/H2O bubble absorption process[J].International Journal of Refrigeration,20O6.3,29(2):170-177.
  • 6Kim J K,Jung J Y,Kang Y T.Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids[J].International Journal of Refrigeration,2007.1,30(1):50-57.
  • 7MaX H,SuF M,Chen JB,et al.Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid[J].Journal of Mechanical Science and Technology,2007,21:1813-1818.
  • 8Ma X H,Su F M,ChenJ B,et al.Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid[J].International Communications in Heat and Mass Transfer,2009.36:657-660.
  • 9Ganguly R,SenS,Puri I K.Heat transfer augmentation using a magnetic fuid under the influence of a line dipole[J].J Magn Magn Mater,2004,271(1):63-73.
  • 10Suresh A K,Bhalerao S.Rate intensification of mass transfer process using ferrofluids[J].IndianJ Pure Appl Phys,40(2001):172-184.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部