期刊文献+

基于ICA-R的复值信号抽取方法 被引量:2

Blind extraction of complex-valued signal using ICA-R
下载PDF
导出
摘要 参考独立分量分析(independent component analysis with reference,ICA-R)通过引入参考信号而实现期望实值源信号的抽取,具有消除传统ICA输出顺序不确定性和显著降低运算量等优点.为此将ICA-R的优势拓展到期望复值源信号抽取.首先,将N维复值ICA问题转化为由其实部和虚部组成的2N维实值ICA问题;然后,利用期望源信号的实部参考信号或虚部参考信号进行ICA-R;最后,根据转换混合矩阵的结构特点,消除ICA-R抽取信号实部与虚部间的幅值不确定性,进而得到无附加相移的期望复值信号.计算机仿真和性能分析结果表明了所提方法的有效性. Independent component analysis with reference (ICA-R) extracts only desired signals by incorporating prior information as reference signals. It has several advantages, such as eliminating the ambiguity of traditional ICA and significantly reducing computational load. ICA-R is extended to extract a complex-valued signal of interest. First, an N-dimension complex ICA is transformed into a 2N-dimension real ICA formed by a real part and an imaginary part. Then, ICA-R is applied to the real part or the imaginary part to give the corresponding parts of the desired signal, which are finally combined to form the estimated signal. By utilizing the characteristics of the transforming mixing matrix, the ambiguity between the real part and the imaginary part of the extracted signal is avoided, and the desired signal is finally obtained without phase error. Computer simulations and performance analysis demonstrate the efficacy of the proposed method.
作者 林秋华 李镜
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第6期919-925,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60402013) 辽宁省自然科学基金资助项目(20062174)
关键词 参考独立分量分析 独立分量分析 盲源分离 参考信号 复值信号 independent component analysis with reference independent component analysis blind source separation reference signal complex-valued signal
  • 相关文献

参考文献12

  • 1COMON P. Independent component analysis - A new concept? [J]. Signal Processing, 1994, 36(3): 287-314
  • 2HYVARINEN A, KARHUNEN J, OJA E. Independent Component Analysis[M]. New York: John Wiley, 2001
  • 3CICHOCKI A, AMARI S. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications[M]. Chichester: John Wiley, 2003
  • 4LIN Q H, ZHENG Y R, YIN F L, et al. Speech segregation using constrained ICA [J]. Lecture Notes in Computer Science, 2004, 3173 : 755-760
  • 5LU W, RAJAPAKSE J C. ICA with reference[C] // Proceedings of the Third International Conference on Independent Component Analysis and Blind Source Separation (ICA 2001). California: [s n], 2001: 120-125
  • 6LU W, RAJAPAKSE J C. Approach and applications of constrained ICA [J]. IEEE Transactions on Neural Networks, 2005, 16(1):203-212
  • 7AMARI S, DOUGLAS S C, CICHOCKI A, et al. Multichannel blind deconvolution and equalization using the natural gradient [C] // Proceedings of the 1997 1st IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE, 1997 : 101-104
  • 8CALHOUN V D, ADALI T, PEARLSON G D, et al. Independent component analysis of fMRI data in the complex domain[J].Magnetic Resonance in Medicine, 2002, 48:180-192
  • 9BINGHAM E, HYVARINEN A. A fast fixed-point algorithm for independent component analysis of complex-valued signals [J]. International Journal of Neural Systems, 2000, 10(1) : 1-8
  • 10BINGHAM E, HYVARINEN A. ICA of complex valued signals: a fast and robust deflationary algorithm [J]. Proceedings of the International Joint Conference on Neural Networks, 2000, 3 : 357-362

同被引文献18

  • 1L Wang, H Ding, F Yin. Combining superdirective beamforming and frequency-domain blind source separation for highly reverberant signals [ J]. EURASIP Journal on Audio, Speech, and Music Processing,2010 (1) :1 -t3.
  • 2H shen, M Kleinsteuber. Complex blind source separation via simultaneous strong uncorrelating transform [ C ]. LVA/ICA10 Proceedings of the 9th international conference on Latent variable analysis and signal separation. Belin Heidelberg,2010:287 -294.
  • 3E Bingham, E Hyvarinen. A fast fixed-point algorithm for independent component analysis of complex valued signals[ J]. Intemation Journal of Neural Neural Systems ,2000,10 (1) :1 -8.
  • 4Eriksson J, Koivunen V. Complex random vectors and ICA models : identifiability, uniqueness, and separability [ J ]. IEEE Transactions on Information Theory, 2006,52 ( 3 ) : 1017 - 1029.
  • 5C Jih-cheng, S Douglas. A Robust complex FastICA algorithm using the Huber M-Estimator Cost function [ C ]. ICA2007, UK, London,2007 : 152 - 160.
  • 6S Javidi, P Mandie. Complex blind source extraction form noisy mixtures using second-order statistics [ J ]. IEEE transaction on circuits and systems,2010,57 (7) : 1404 - 1416.
  • 7Novey M. Adali T. Complex ICA by Negentropy Maximization. Neural Networks [ J ]. IEEE Transactions on neural networks,2008,19 (4) :596 - 609.
  • 8A Asad, F Muhammad. A modified m-estimator for the detection of outliers [ J ]. PJSOR,2005,1 ( 1 ) :49 - 64.
  • 9P. Comon. Independent component analysis: a new concept [J]. Signal Processing, 1994,36 (3) : 287-314.
  • 10W. Lu, J. C. Rajapakse. ICA with reference[J]. Neurocom- puting, 2006,69 (16-18) : 2244-225.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部