期刊文献+

基于非光滑神经网络的X-Y定位平台系统模型辨识

Modeling of X-Y positioning stage based on nonsmooth neural network
下载PDF
导出
摘要 本文首先对X-Y定位平台系统的组成及模型的建立作了简单描述,接着,针对X-Y定位平台中存在的载荷以及摩擦参数的不确定性问题,提出了一种基于改进神经网络结构来对X-Y定位平台不确定性非线性系统的辨识的方法。采用非光滑神经网络来对不确定非线性系统建立模型。结果表明该方法能够对复杂的非线性系统进行辨识,比一般的神经网络具有较高的辨识精度,且具有良好的泛化性能.这种方法可以应用到工业过程实际系统中。 The X-Y table experiment system and its modeling were described firstly, following it, An improved networks was proposed to deal with the uncertainty of load and friction parameters existed in the X-Y positioning table. An nonsmooth neural-network was application to the uncertainty of nonlinear systems. Both simulations and experimental results demonstrate that the method can be identifying for the complex nonlinear systems and much improvement of performance respect to conventional neural-network, the obtained model shows good performance in model validation. The proposed approach can be applied in industries.
出处 《微计算机信息》 北大核心 2008年第34期257-258,266,共3页 Control & Automation
基金 国家自然科学基金资助(60572055) 含有非平滑非线性的三明治动态系统辨识与预测
关键词 神经网络 定位平台 辨识 摩擦 neural-network positioning table identification friction
  • 相关文献

参考文献4

  • 1Amstrong B, Dupont de Wit C.A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction[J].Automatics,1994,30(7): 1083-1138.
  • 2SimonHaykin 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 3王欣峰,高伟.基于RBFNN的伺服系统在线辨识方法[J].微计算机信息,2005,21(11S):86-87. 被引量:5
  • 4Rastko.Selmic and Frank- L .Lewis.Neural Network Approximation of Piecewise Continuous Functions: Application to Friction Compensation [J]. IEEE Transactions on Neural Networks, vol.13, pp,745-751,NO.3,MAY 2002.

二级参考文献2

  • 1Anastassios G.Chassiakos ,Sami F.Masri Identification of structural systems by neural networks 1996.
  • 2N.Yadaiah,L.Sivakunar,B.L.Deekshatulu Parameter identification via neural networks with fast convergence 2003.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部