期刊文献+

一类半导体方程组整体弱解的存在性 被引量:3

下载PDF
导出
摘要 考虑一类半导体方程组的混合初边值问题,采用拟单调方法和逼近过程,通过一系列先验估计,证明了该问题整体弱解的存在性.
出处 《数学年刊(A辑)》 CSCD 北大核心 1997年第6期733-742,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金
  • 相关文献

参考文献4

  • 1Fang W,J Differ Equ,1995年,123卷,2期,523页
  • 2王元明,数学年刊.A,1993年,14卷,2期,262页
  • 3Lions J L,非线性边值问题的一些解法(译),1992年
  • 4王元明,高校应用数学学报,1987年,2卷,2期,228页

同被引文献20

  • 1Gajewski H. On existence uniqueness and asymptotic behavior of solutions of the basic equations for carder transport in semiconductors[J]. Z Angew Math Mech, 1985,65(2) : 101-108.
  • 2Gajewski H,Groger K. On the basic equations for carrier transport in semiconductors[J]. J Math Anal Appl, 1986,113(1), 12-35.
  • 3Groger K. On the boundedness of solutions to the basic equations in semiconductor theory[J]. Math Navhr, 1986,129 : 167- 174.
  • 4Groger K. Initial boundary value problems from semiconductor device theory[J]. Z Angew Math Mech ,1987,67(8) ,345-355.
  • 5Frehse J,Naumann J. An existence theorem for weak solutions of the basic stationary semiconductor equadons[J]. Appl Anal, 1993,48(1-4) : 157-172.
  • 6Frehse J ,Naumarm J. On the existence of weak solutions to a system of stationary semiconductor equations with avalanche generation[J]. Math Models Meth AppL Sei , 1994,4(2) :273-289.
  • 7Frehse J ,Naurnann J. Stationary semiconductor equations modeling avalanche generation [J]. J Math Anal Appl ,1996,198(3) :685-702.
  • 8Naumann J. Semiconductor equations modeling non-stationary avalanche generation in 3D [J]. Differential and Integral Equations,1994,7(6):1511-1526.
  • 9Naumarm J. An existence theorem for weak solutions of the semiconductor equations modeling the nonstationary avalanche generation[J]. Asymptotic Anal, 1995,11 (1) : 55 - 72.
  • 10Fang W,It6 K. On the time-dependent drift-diffusion model for semiconductors[J]. J Differential Equations, 1995,117(2) :245-280.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部