摘要
本文利用Popov频率法,讨论了三阶直接控制系统 σ=cTX零解的绝对稳定性,主要获得如下结果:1°.假设A=(aij)3×3,Reλ(A)<0,且cTb·trA2+cTA2b≤0,cT(A-1)2b≤0,则其零解绝对稳定的充分必要条件是cTb≤0;cTA-1b≥0.2°.假设A=(aij)3x3,A的特征根均为负实数,cTb=0,则其零解绝对稳定的充分必要条件为cTA2b≥0;cTA-1b≥0.
In this paper,the absolute stability of 3rd-order direct control system dX/dt-AX+bf(σ),σ=cTX is studied. The Popov frequency method is applied and the following main results are obtained:1°If A= (aij)3x3,Reλ(A) <0, and cTb. trA2-cTA2b≤0,cT(A-1)2b≤0, then the necessary and sufficient condition for obsolute stability of the system is that cTb≤0,cTA-1b≥0. 2° If A = (aij)3×3,the characteristic roots of the matrix A are all negatire,and cTb=0, then the necessary and sufficient condition for obsolute stability of the system is that cTA2b≥ 0, cTAb≥0.
出处
《湖南教育学院学报》
1997年第5期98-104,共7页
Journal of Hunan Educational Institute
关键词
直接控制系统
绝对稳定性
充要条件
控制系统
direct control system
necessary and sufficient condition
absolute stability