期刊文献+

基于核空间中最优变换和聚类中心的鉴别特征提取

Extraction of Discriminant Features Based on Optimal Transformation and Cluster Centers of Kernel Space
下载PDF
导出
摘要 应用统计学习理论中的核化原理,可以将许多线性特征提取算法推广至非线性特征提取算法.提出了基于核化原理的最优变换与聚类中心算法,即通过非线性变换,将数据映射到高维核空间,应用最优变换算法,实现原空间数据的非线性特征提取,而求解过程却借助"核函数",回避了复杂非线性变换的具体表达形式.新算法可提取稳健的非线性鉴别特征,从而解决复杂分布数据的模式分类问题.大量数值实验表明新算法比传统的最优变换与聚类中心算法更有效,甚至优于经典的核Fisher判别分析. As is known, kernel method is one of the most important research points in statistical learning theory, and the kernel-based learning methods are attracting extensive research interests. It has been proved that a lot of linear feature extraction methods can be generalized to the nonlinear learning methods by using kernel methods. In this paper, a new nonlinear learning method of optimal transformation and cluster centers (OT-CC) is presented by using kernel technique. Data are mapped into the high dimensional kernel space via nonlinear transformation from original space, and then the learning method of optimal transformation and cluster centers is applied for feature extraction. However, the kernel function is utilized in result resolving process so that the complex expression of nonlinear transformation is avoided. The novel method is named optimal transformation and cluster center algorithm of kernel space (KOT-CC), which is a powerful technique for extracting nonlinear discriminant features and is very effective in solving pattern recognition problems where the overlap between patterns is serious. A large number of experiments demonstrate that the new algorithm outperforms OT-CC and kernel Fisher discriminant analysis (KFDA) in ability for extracting nonlinear diseriminant features and computation complexity. Furthermore, the problem of "course dimensionality" is avoided.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第12期2138-2144,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60574039,60371044) 国防预研基金项目(413070501)~~
关键词 统计学习 核方法 最优聚类中心 最优变换 核FISHER statistical learning kernel method optimal cluster center optimal transformation kernel Fisher
  • 相关文献

参考文献9

  • 1Anil K Jain, Robert P W Duin, Mao Jianehang. Statistical pattern recognition: A review [J]. IEEE Trans on PAMI, 2000, 22(1) :4-37.
  • 2杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 3周代英,沈晓峰,杨万麟.最优聚类中心雷达目标一维距离像识别[J].系统工程与电子技术,2002,24(4):44-46. 被引量:5
  • 4Muller K B, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms [J]. IEEE Trans on Neural Networks, 2001, 12(2): 181-201.
  • 5田盛丰.基于核函数的学习算法[J].北方交通大学学报,2003,27(2):1-8. 被引量:37
  • 6Vapnik V. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
  • 7Scholkopf B, Smola A J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(6): 1299-1319.
  • 8Mika S, Ratsch G, Weston J. Fisher discriminant analysis with kernels [C] //Neural Networks Signal Processing IX: Proc of 1999 IEEE Signal Processing Society Workshop. Piseatawy, N J: Institute of Electrical and Electronics Engineers Inc, 1999:41-48.
  • 9边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.

二级参考文献54

  • 1Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254.
  • 2Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 3Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319.
  • 4[1]Wilks S S. Mathematical Statistics. New York: Wiley Press, 1962. 577~578
  • 5[2]Duda R, Hart P. Pattern Classification and Scene Analysis. New York: Wiley Press, 1973
  • 6[3]Daniel L Swets, John Weng. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8): 831~836
  • 7[4]Belhumeur P N. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720
  • 8[5]Cheng Jun Liu, Harry Wechsler. A shape- and texture-based enhanced Fisher classifier for face recognition. IEEE Transactions on Image Processing, 2001, 10(4): 598~608
  • 9[6]Foley D H, Sammon J W Jr. An optimal set of discriminant vectors. IEEE Transactions on Computer, 1975, 24(3): 281~289
  • 10[7]Tian Q. Image classification by the Foley-Sammon transform. Optical Engineering, 1986, 25(7): 834~839

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部