期刊文献+

H吸附诱发ZnO(10■0)表面的金属化 被引量:2

Adsorbed-H Induced Metallization of ZnO(10■0) Surface
下载PDF
导出
摘要 采用基于广义梯度近似的投影缀加平面波赝势和周期性边界条件的超晶胞模型,用第一原理方法计算并分析了H在ZnO(10■0)面上的吸附能、态密度和能带结构.结果表明:1)H单原子吸附时,H在ZnO(10■0)面上的吸附(用ZnO(10■0)-H表示)只形成OH原子团,没有ZnH出现;面上剩余的Zn悬挂键导致此面显示出很强的金属性.DOS和能带分析显示导带(CB)底的Zn4s态得到电子,向下移动导致价带导带在禁带中出现交叠,呈现明显金属化.2)双H在ZnO(10■0)面上的吸附用ZnO(10■0)-2H表示,在ZnO(10■0)-2H吸附面上,2H分别吸附在O、Zn上,饱和了面上的两个悬挂键,DOS和能带分析显示ZnO(10■0)-2H吸附面与清洁ZnO(10■0)面大致相同,均为绝缘面. The adsorption energy, density of states (DOS) and band structure of H on a ZnO(101^-0) surface were studied using the first-principles projector-augmented-wave (PAW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) and the supercell model. It was found that: 1) For H adsorbed on ZnO(101^-0) (denoted ZnO(101^-0)-H) only the OH group was formed and the ZnH species was not detected. The unoccupied Zn 4s electronic state receives an electron and renders the surface metallic. DOS and the band structure show that the Zn 4s electronic state in the conduction band (CB) receives electrons and migrates toward the forbidden band so that overlapping of the CB and valence band (VB) below the Fermi level is observed. 2) When 2H are adsorbed, the ZnO (101^-0) is denoteds ZnO(101^-0)-2H. On the surface of ZnO(101^-0)-2H two Hs are adsorbed separately on Zn and O and the two dangling bonds on the surface are saturated. The analysis of DOS and band structure of the ZnO(101^-0)-2H surface shows that it is the same as a clean ZuO(101^-0) surface and that both are insulating surfaces.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第12期2293-2296,共4页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(60476047) 河南省高校科技创新人才支持计划(2008HASTLT030)资助
关键词 第一原理 金属化 ZNO H吸附 First-principles Metallization ZnO H adsorption
  • 相关文献

参考文献24

  • 1Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Prog. Mater. Sci., 2005, 50:293
  • 2Zhong, L. W. J. Phys.-Condens. Matter, 2004, 16:R829
  • 3熊稳,赵铧.ZnO薄膜的激子能量和束缚能的计算[J].物理学报,2007,56(2):1061-1065. 被引量:9
  • 4Martins, J. B. L.; Longo, E.; Salmon, R. O. D.; Espinoza, V. A. A.; Taft, C. A. Chem. Phys. Lett., 2004, 400:481
  • 5Lindsay, R.; Gutierrez-Sosa, A.; Thornton, G.; Ludviksson, A.; Parker, S.; Campbell, C. T. Surf.. Sci., 1999, 439:131
  • 6Yin, X. L.; Birkner, A.; Hanel, K.; Lober, T.; Kohler, U.; Woll, C. Phys. Chem. Chem. Phys., 2006, 8:1477
  • 7Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77: 3865
  • 8Olga, D.; Lynn, A. B.; Ulrike, D. Surf. Sci., 2002, 51:201
  • 9刘亚明,戴宪起,姚树文,侯振雨.ZnO(10■0)非极性表面的第一原理研究(英文)[J].郑州大学学报(理学版),2008,40(2):83-86. 被引量:1
  • 10Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136:B864

二级参考文献45

  • 1陈文斌,陶向明,赵新新,蔡建秋,谭明秋.吸附O的Cu(110)c(2×1)表面原子结构和电子态[J].物理化学学报,2005,21(10):1086-1090. 被引量:5
  • 2孙成伟,刘志文,秦福文,张庆瑜,刘琨,吴世法.生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响[J].物理学报,2006,55(3):1390-1397. 被引量:42
  • 3Storch,H.H.; Golumbic,N.; Anderson,R.B.The Fisher-Tropsch and related syntheses.New York:John Wiley,1951:1-234
  • 4Chou,M.Y.; Chelikowsky,J.R.Phys.Rew.Lett.,1987,59:1737
  • 5Feibelman,P.J.; Hamann,D.R.Surf.Sci.,1983,179:153
  • 6Teeter,G.; Erskine,J.L.Phys.Rev.B,2000,61:13929
  • 7Lindroos,M.; Pfnur,H.; Menzel,D.Surf.Sci.,1983,133:443
  • 8Lindroos,M.; Pfnur,H.; Menzel,D.Phys.Rev.B,1986,33:6684
  • 9Barteau,M.A.; Broughton,J.Q.; Menzel,D.Surf.Sci.,1983,133:443
  • 10Methfessel,M.; Scheffler,M.Phys.Rev.B,1992,46:4816

共引文献12

同被引文献23

  • 1倪萌,M.K.H.Leung,K.Sumathy.氢存储技术[J].可再生能源,2005,23(1):35-37. 被引量:13
  • 2Lorenzut B,Montini T,Rogatis L D,et al.Hydrogen production through alcohol steam reforming on Cu/ZnO-based catalysts[J].ApplCatal B:Environmental,2011,101(3/4):397-408.
  • 3Campbell C T.Ultrathin metal films and particles on oxide surfaces:structural,electronic and chemisorptive properties[J].Surf Sci Rep,1997,27(1/3):101-111.
  • 4Hu H Q,Lv Z T,Cui S X,et al.Theoretical study of ZnO and M/ZnO(M=Cu,Ag and Au)surfaces with DFT approach[J].ChemPhys Lett,2011,510(1/3):99-103.
  • 5Geissler K,Newson E,Vogel F,et al.Autothermal methanol reforming for hydrogen production in fuel cell applications[J].Phys ChemChem Phys,2001,3:289-293.
  • 6Meyer B,Marx D.Density-functional study of Cu atoms,monolayers,films,and coadsorbates on polar ZnO surfaces[J].Phys Rev B,2004,69(23):235420-7.
  • 7Yoshihara J,Parker S C,Campbell C T.Island growth kinetics during vapor deposition of Cu onto the Zn-terminated ZnO(0001)surface[J].Surf Sci,1999,439(1/3):153-162.
  • 8Jedrecy N,Gallini S,Sauvage-Simkin M,et al.Copper growth on the O-terminated ZnO 0001surface:Structure and morphology[J].Phys Rev B,2001,64(8):085424-7.
  • 9Koplitz L V,Dulub O,Diebold U.STM Study of Copper Growth on ZnO(0001)-Zn and ZnO-O Surfaces[J].J Phys Chem B,2003,107(38):10583-10590.
  • 10Dulub O,Boatner L A,Diebold U.STM study of Cu growth on the ZnO surface[J].Surf Sci,2002,504:271-281.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部