期刊文献+

泽雅水库混合深度的年内变化及其对藻类生消影响(英文) 被引量:2

Seasonal variation of mixing depths and its influence on phytoplankton dynamics in Zeya Reservoir, southeast China
下载PDF
导出
摘要 就水库藻类水华的发生机制而言,近年来值得关注的研究动向是,一些研究者开始认识到光照和混合的交互作用可能对藻类水华生消过程起到了关键作用,即认为水体混合深度的变化直接影响着可获得光强,从而决定着藻类生物量的时空分布。在这些研究中,混合层深度的确定是探讨藻类生消过程影响的前提。然而已有的研究大都只进行粗略的估计。本文提出采取系统聚类分析的方法确定泽雅水库不同时期的混合深度。在具体分析过程中,将测得的某一天某一深度处的 pH,DO,温度,电导率,氧化还原电位等 5 个参数结果看成一类,采用类间平均连接法,间隔尺度变量为欧氏距离的平方进行聚类。对采用系统聚类分析法和已有的"1?C"法计算得的全年的混合深度的变化趋势进行比较,认为系统聚类分析法可以更为准确地反应水体混合的实际情况。依据混合深度的不同特征,在年内水库水体可划分为热成层时期,全混时期和两者之间的过渡期,藻类生物量与混合深度呈负相关。在热成层期间,藻类生物量都超过了 13mm3L-1。而到了 9 月份,当混合层深度扩展到 15m 以上时,藻类生物量明显下降,此后水体处于全混时期,藻类生物量较低,在 9-20mm3/L-1波动。基于稳态假设的前提下,发现随着混合深度增加,稳态藻类生物量呈单峰变化,在混合深度 2m 处达到最大值,即在混合深度为 0-2m 之间时,藻类沉降作用是藻类生物量的主要影响因素,随着深度增加,沉降作用下降,因此藻类生物量增加;当混合深度超过 2m 之后,光限制作用占主导因素,藻类生物量随混合深度增加而下降。这一结果为 Diehl 的假说提供了水库现场的实证。 In reservoirs or lakes, mixing depth affects growth and loss rates of phytoplankton. Based on data collected from Zeya Reservoir, China, we investigated the influence on phytoplankton dynamics using cluster analysis of the scaled mixing depth. According to the scaled mixing depth, a year could be divided into three different periods, including the thermally stratified period, the isothermally mixed period, and the transition period. Mixing depth had a significant correlation with phytoplankton biovolume. According to steady state assumption, a unimodal curve (mixing depth - phytoplankton biovolume) with a significant peak at the mixing depth of 2 m was observed, which is largely consistent with Diehl' prediction.
出处 《生态科学》 CSCD 2008年第5期414-417,共4页 Ecological Science
关键词 混合深度 藻类生物量 热成层时期 全混时期 mixing depth phytoplankton dynamics thermally stratified period isothermally mixed period
  • 相关文献

参考文献8

  • 1Huisman J. 1999. Population dynamics of light-limited phytoplankton: Microcosm experiments[J]. Ecology 80: 202-210
  • 2Diehl S. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: Theory[J]. Ecology 83:386-398
  • 3Diehl S A, Berger A, Ptacnik R, et al. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: Field experiments[J]. Ecology 83:399--411
  • 4Huisman J, Sharpies J, Stroom JM, et al. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species[J]. Ecology 85:2960-2970
  • 5Berger S A, Diehl S, Kunz T J. 2006. Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths[J]. Limnology and oceanography 51: 1898-1905
  • 6Kunz T J, Diehl S. 2003. Phytoplankton, light and nutrients along a gradient of mixing depth: A field test of producer-resource theory[J]. Freshwater Biology 48: 1050-1063
  • 7Reynolds C S. 1984. The Ecology of Freshwater Phytoplankton[M]. Cambridge University Press, Cambridge, U.K
  • 8Loiselle S A, Cozar A, Dattilo A, et al. 2007. Light limitations to algal growth in tropical ecosystems[J]. Freshwater Biology 52:305-312

同被引文献24

引证文献2

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部