期刊文献+

基于邻接传感器及神经网络的车辆分类算法 被引量:7

Vehicle classification algorithm based on binary proximity sensors and neural networks
下载PDF
导出
摘要 为了提高车辆分类的性能,基于邻接传感器网络和BP神经网络提出一个有效的车辆分类算法MSVCA。在本算法中,使用成本相对低廉、灵敏度高的地磁传感器,采集车辆对地磁场的磁扰动特征信号,并根据邻接传感器网络本身的几何特性估计车辆长度,最后采用BP神经网络对车辆进行分类。神经网络的输入包括车辆长度、速度以及特征向量序列,输出为预定义的车辆类型。仿真及路面实验获得了93.61%的准确率。结果表明该算法提高了车辆分类的准确性,且具有较高的精度和顽健性。 To improve the classification accuracy, a new algorithm was developed with binary proximity magnetic sensors and back propagation neural networks. In this algorithm, use the low cost and high sensitive magnetic sensors to detect the magnetic field distortion when vehicle pass by them and estimate vehicle length with the geometrical characteristics of binary proximity networks, and finally classify vehicles via neural networks. The inputs to the neural networks include the vehicle length, velocity and the sequence of features vector set, and the output is predefined vehicle types. Simulation and on-road experiment obtains high recognition rate of 93.61%. It verified that this algorithm enhances the vehicle classification with high accuracy and solid robustness.
出处 《通信学报》 EI CSCD 北大核心 2008年第11期139-144,共6页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2005CB321904)~~
关键词 智能交通 车辆分类 邻接传感器网络 神经网络 聚类算法 intelligent Wansportation vehicle classification binary proximity sensor networks neural network clustering
  • 相关文献

参考文献2

二级参考文献163

共引文献441

同被引文献55

  • 1王晓鸣.神经网络——通信及其保密通信领域的新技术[J].通信技术与发展,1994(6):30-40. 被引量:2
  • 2贾永涛,张帆.车型识别专家系统的设计[J].计算机测量与控制,2006,14(4):472-473. 被引量:4
  • 3葛威,朱光喜,徐海祥,谢磊,陶平安.基于支持向量机方法的车型分类[J].计算机工程与应用,2006,42(21):210-213. 被引量:2
  • 4张彦辉,刘小君,王伟,刘焜.潮湿路面上胎面花纹对轮胎附着性能的影响[J].农业工程学报,2007,23(6):33-38. 被引量:11
  • 5CUTLER R,DAVIS L.Robust real-time periodic motion detection analysis,and application[J].IEEE Trans Pattern Analysis and Machine Intelligence,2000,22(8):781-796.
  • 6TOTH D,AACH T.Detection and recognition of moving objects using statistical motion detection and Fourier descriptors[C].Proceedings of the 12th International Conference on Image Analysis and Processing,2003(3):430-435.
  • 7BOGOMOLOV Y,DROR G.Classification of moving targets based on motion and appearance[C].Machine Vision Conference,2003(2):429-438.
  • 8COLLINS T R.A system for video surveillance and monitoring[R].Carnegie Mellon University,2000.
  • 9HARITAOGLU I,HARWOOD D,DAVIS LS.Real-time surveillance of people and their activities[J].IEEE Trans Pattern Analysis and Machine Intelligence,2000,22 (8):809-830.
  • 10COHEN I,MEDIONI G.Detection and tracking of objects in airborne video imagery[R].University of Southern California,2001.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部