期刊文献+

完全图循环分解成2-正则图 被引量:2

Cyclically Decomposing the Complete Graph into the 2-regular Graphs
原文传递
导出
摘要 Alspach提出如下猜想:"设n是奇数并且每个m_1,m_2,…,m_h都是大于等于3而小于等于n的整数.若sum from i=1 to h m_i=n(n-1)/2,则K_n可以分解成圈G_(m_1),G_(m_2),…,G_(m_h)."用记号C(m_1^(n_1)m_2^(n_2)…m_s^(n_s))表示由n_i个m_i长圈,i=1,2,…,s组成的2-正则图.设Γ={C((2m_i)^(n_i)…(2m_s)^(n_s))|i∈[1,s]}.研究了循环(K_v,Γ)-分解的构造方法及其存在性问题,并且证明了Alspach猜想的一些特殊情况. Alspach posed the conjecture "let m1, m2,…, mh be positive integers not less than 3 and n be odd. If ^h∑ i=1 mi=n(n-1)/2Then Kn can be decomposed into h cycles Cm1, Cm2,…, Cmh."In this paper, we prove some special cases of the conjecture.The symbolC(m1^n1 m2^ n2…ms^ns)denotes a 2-regular graph consisting of ni cycles of length mi, i=1,2,…,s.Let the class of graphsΓ={C((2mi)^ni…(2ms)^ns)|i∈[1,s]}. Some construction methods of the cyclic(Kv,Γ)-decompositions are given, and cyclic(Kv,Γ)-decompositions are established.
作者 梁志和
出处 《应用数学学报》 CSCD 北大核心 2008年第6期1137-1141,共5页 Acta Mathematicae Applicatae Sinica
基金 河北省自然科学基金(No.08M002) 河北省教育厅基金资助
关键词 循环(H Γ)-分解 2-正则图 cyclic (H, Γ)-decomposition 2-regular graph cycle
  • 相关文献

参考文献12

  • 1Colbourn C J, Dinitz J H. The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton FL, 1996
  • 2Alspach B, Gavlas H. Cycle Decompositions of Kn and Kn - I. J. Combin. Theory (Series B), 2001, 81:77-99
  • 3Sajna M. Cycle Decompositions Ⅲ: Complete Graphs and Fixed Length Cycles. J.Combin. Des., 2002, 10:27-78
  • 4Peltesohn R. Eine Losung der Beiden Heffterschen Differenzenprobleme. Compos. Math., 1938, 6: 251-257
  • 5Buratti M, Del Fra A. Existence of Cyclic k-cycle Systems of the Complete Graph. Discrete Math., 2003, 261:113-125
  • 6Blinco A, El-Zanati S I, Eynden C V. On the Cyclic Decomposition of Complete Graphs into Almostbipartite Graphs. Discrete Math., 2004, 284:71-81
  • 7Fu H, Wu S. Cyclically Decomposing Complete Graphs into Cycles. Discrete Math., 2004, 282: 267-273
  • 8Buratti M, Del Fra A. Cyclic Hamiltonian Cycle Systems of the Complete Graph. Discrete Math., 2004, 279:107-119
  • 9Vietri A. Cyclic k-cycle Systems of order 2kn + k; Asolution of the Last Open Cases. J Combin Designs, 2004, 12:299-310
  • 10Bryant D, Gavlas H, Ling A C H. Skolem-type Difference Sets for Cycle Systems. Electronic J. of Combinatorics, #R38, 2003, 10. http://www.combinatorics.org/

同被引文献25

  • 1赵新梅,陈祥恩,刘信生.几类完全4-部图的邻强边染色[J].西北师范大学学报(自然科学版),2006,42(2):26-29. 被引量:3
  • 2朱秀丽.有向图正则覆盖的特征多项式[J].哈尔滨理工大学学报,2006,11(5):52-54. 被引量:1
  • 3刘儒英.直径为5的整树.系统科学与数学,1988,(4):357-360.
  • 4Bondy J A , Murty U S. Graph Theory and Application [ M ]. New York : Macmillan Press, 1987.
  • 5Yongbing Shi. The number of cycles in a Hamiltion graph[ J]. Discrete Mathematics, 1994, 133 ( 1 ) : 249 - 257.
  • 6Cayley A.On the mathematical theory of isomers[J].Philosophical Magazine,1874,67 (5):444-446.
  • 7Harary F,Schwenk A J.Which graphs have integral spectra?[C] ∥Graphs and Combinatorics.Lecture Notes in Mathematics.Berlin:Springer-Verlag,1974,406:46-51.
  • 8Wang L G,Li X L,Hoede C.Integral complete r-partite graphs[J].Discrete Math,2004,283(1/3):231-241.
  • 9Wang L G,Liu X D.Integral complete multipartite graphs[J].Discrete Math,2008,308(12):3860-3870.
  • 10Wang L G,Wang Q.Integral complete multipartite graphs Ka1p1,a2p2,...,a(s)p(s) with s =5,6[J].Discrete Math,2010,310(4):812-818.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部