期刊文献+

基于Schur-Hadamard积波束形成的相干分布式信源参数估计 被引量:2

Parameter estimation based on Schur-Hadamard product beamforming for coherently distributed source
下载PDF
导出
摘要 对于由本地散射导致的分布式信源参数估计,根据分布式信源空间角度信号密度的共轭对称特性,将相干分布式信源的方向向量化简为点信源方向向量与实矩阵的Schur-Hadamard积,提出了一种基于Schur-Hadamard积波束形成的相干分布式信源中心波达方向和角度扩散参数估计算法。由于在约束条件中考虑了角度扩散,算法具有一定的鲁棒性,适用于角度扩散较大的场合。仿真实验表明,与MUSIC类算法DSPE相比,基于Schur-Hadamard积的波束形成参数估计算法具有更好的信噪比性能和参数估计精度,更适用于复杂的通信环境。 For estimating parameters of local scattering distributed source, according to the symmetry assumption of angular signal intensity, the steering vector is deduced to be a Schur-Hadamard product comprising the steering vector of the point source and a real matrix for coherently distributed source. And then beamforming algorithm based on Schur-Hadamard product is proposed for estimating parameters-the central direction of arrival (DOA) and angular spread. The angular spread parameter is considered in the constraint, so the proposed algorithm is robustness, and can be applied to the scenarios where angular spread is large. Simulations clearly demonstrate that the algorithm enjoys better signal-to-noise ratio performance and improved precision compared with DSPE algorithm, and is more suitable for complicated environment.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第11期2099-2102,共4页 Systems Engineering and Electronics
基金 教育部博士学科点专项科研基金资助课题(20050145019)
关键词 相干分布式信源 中心波达方向 角度扩散 波束形成 coherently distributed source the central DOA angular spread beamforming
  • 相关文献

参考文献11

  • 1Zetterberg P, Ottersten B. The spetrum efficiency of a base station antenna array for spatially selective transmission[J]. IEEE Trans. on Vehicular Tech. , 1995, 44(3) : 651 -660.
  • 2Goldberg J M, Fonollosa J R. Down-link beam-forming for spatially distributed sources in cellular mobile communications[J]. Signal Processing, 1998, 65 : 181 - 197.
  • 3Valaee S, Champagne B, Kabal P. Parametric localization of distributed sources[J]. IEEE Trans. on Signal Processing, 1995, 43(9) :2144 - 2153.
  • 4Trump T, Ottersten B. Estimation of nominal direction of arrival and angular spread using an array of sensors[J]. Signal Processing, 1996, 50:57-69.
  • 5Hassanien A, Shahbazpanahi S, Gershman A B. A generalized Capon estimator for localization of multiple spread sources[J].IEEE Trans. on Signal Processing, 2004, 52 (1) : 280 - 283.
  • 6Shahbazpanahi S, Valaee S, Bastani M H. Distributed source localization using ESPRIT algorithm[J].IEEE Trans. on Signal Processing, 2001, 49(10) : 2169 - 2178.
  • 7Monakov A, Besson O. Direction finding for an extended target with possibly non-symetric spatial spectrum[J].IEEE Trans. on Signal Processing, 2004, 52(1) : 283 - 287.
  • 8Ghogho Mounir, Besson O, Swami A. Estimation of directions of arrival of multiple scattered sources[J]. IEEE Trans. on Signal Processing, 2001, 49(11) : 2467 - 2480.
  • 9Gradshteyn I S, Ryzhik I M. Table of integrals, series, and products ( 7th Edition )[M]. Orlando: Academic Press, 2007:438.
  • 10Capon J. High-resolution frequeney-wavenumber spectrum analysis[C] //Proc. IEEE, 1969,57 : 1408 - 1418.

二级参考文献3

  • 1Lee Y U,IEEE Trans Signal Processing,1997年,145卷,960页
  • 2Meng Y,IEE Proc Radar Sonar Navig,1996年,143卷,1页
  • 3Meng Y,Proc ICSP,1993年,10卷,430页

共引文献3

同被引文献28

  • 1Valaee S, Champagne B, Kabal P. Parametric localization of dis- tributed sources[J].IEEE Trans. on Signal Processing,1995, 43(9) :2144 - 2153.
  • 2Meng Y, Stoica P, Wong K M. Estimation of the directions of arrival of spatially dispersed signals in array processing[J].IEE Proceedings-Radar, Sonar and Navigation, 1996,143 (1) :1 - 9.
  • 3Trump T, Ottersten B. Estimation of nominal direction of arrival and angular spread using an array of sensors[J].Signal Processing,1996,50(4) :57 - 69.
  • 4Besson O, Stoica P. Decoupled estimation of DOA and angular spread for a spatially distributed source[J]. IEEE Trans. on Signal Processing ,2000,48(7) :1872 - 1882.
  • 5Hassanien A, Shallbazpanahi S, Gershman A B. A generalized Capon estimator for localization of multiple Spread sources[J].IEEE Trans. on Signal Processing, 2004,52 (1) : 280 - 283.
  • 6Shahbazpanahi S, Valaee S, Gershman A B. A covariance fitting approach to parametric localization of multiple incoherently distributed sources[J].IEEE Trans. on Signal Processing, 2004, 52(3):592 - 600.
  • 7Zoubir A, Wang Y. Robust generalized Capon algorithm for estimating the angular parameters of multiple incoherently distrib- uted sources[J].IET Signal Processing, 2008,2(2) : 163 - 168.
  • 8Souden M, Affes S, Benesty J. A two-stage approach to estimate the angles of arrival and the angular spreads of locally scattered sources[J]. IEEE Trans. on Signal Processing, 2008,56(5) :1968- 1983.
  • 9Yang B. Projection approximation subspaee tracking[J].IEEE Trans. on Signal Processing,1995,43(1) :95 - 107.
  • 10Abed-Meraim K, Chkeif A, Hua Y. Fast orthonormal PAST algorithm[J]. IEEE Signal Processing Letters ,2000,7(3) :60 - 62.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部