期刊文献+

基于模糊自适应α-β滤波的机动目标跟踪 被引量:7

Maneuvering target tracking based on fuzzy adaptive α-β filter
下载PDF
导出
摘要 针对机动目标的运动特点,提出了一种基于模糊自适应的α-β滤波新算法。算法首先详细分析了目标航向角和观测残差与目标机动的关系,提出综合利用航向角变化量和残差作为模糊逻辑输入变量来调整滤波器参数,且根据实际的机动目标跟踪情况,给出一种有效的模糊逻辑规则设计方法。实验结果表明,提出的算法能够准确对机动目标进行跟踪,性能要好于工程中常用的α-β滤波器,且算法设计简单,可工程实现。 A new adaptive α-β filter algorithm using fuzzy logic is proposed for maneuvering target tracking. Firstly, the relations between both the course angle and measurement residual error and the maneuverability of targets are analyzed, then the two parameters are used as the input variables of the fuzzy logic, and the fuzzy logic rules are designed by the maneuverability to evaluate the parameters of the α-β filter. The experiment results show the proposed algorithm can accurately track manoeuvrable targets, and its performance is better than the conventional α-β filter. Besides, the proposed algorithm is simple in design and easy to use.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第11期2138-2141,共4页 Systems Engineering and Electronics
基金 国防预研基金(51326030204) 广东省自然科学基金(8451806001001836)资助课题
关键词 信息处理技术 机动目标跟踪 模糊逻辑 航向角变化量 information processing maneuvering target tracking fuzzy logic the change of course angle
  • 相关文献

参考文献10

  • 1Munir A, Atherton D P. Adaptive interacting multiple model algorithm for tracking a maneuvering target[J]. IEE Proc. , Radar Sonar Navig. , 1995,142(1): 11-17.
  • 2Blom H A P, Bar-Shalom Y. The interaction multiple model algorithm for systems with a jump-linear smoothing application [J].IEEE Trans. on Aurora. Control, 1988, 33(8): 780 - 783.
  • 3叶西宁,顾幸生,常青,潘泉.一种自适应多目标跟踪算法[J].系统工程与电子技术,2005,27(11):1858-1861. 被引量:1
  • 4Tugnait J K. Detection and estimation for abruptly changing systems[J]. Automatica, 1982, 18(5): 607-615.
  • 5Bugallo M F, Xu Shanshan, Miguez J, et al. Maneuvering target tracking using cost reference particle filtering[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Harbin: IEEE Press, 2004:968 - 971.
  • 6Bar_shalom Y, LI X. Multitarget_multisensor tracking: principles and techniques [M]. Storrs, CT: YBS Publishing, 1995.
  • 7Keith C C, Chan, Lee Vika, et al. Radar tracking for air surveillance in a stressful environment using a fuzzy-gain filter[J]. IEEE Trans. on Fuzzy Systems, 1997, 5(1): 80 - 89.
  • 8Bahari M H, Karsaz A, Khaloozadeh H. A new method based on combined fuzzy logic and Kalman filter for target maneuver diction[C]//Proc. IEEE ISSCAA, Harbin, 2006,1 : 520 - 525.
  • 9Bahari M H, Karsaz A, Khaloozadeh H. High maneuver target tracking based on combined Kalman filter and fuzzy logic[C]// IEEE Information, Decislon and Control, Adelaide: 2007, 2: 59 - 64.
  • 10Sun Tsung-Ying, Tsai Shang-Jeng, Chen Hung-Chun, et al. Fuzzy-based error correction mechanism to improve the precision of intelligent maneuvering target tracking[C]//IEEE International Conference on Information Reuse and Integration, 2006 : 28 - 33.

二级参考文献6

  • 1叶西宁,潘泉,陈鸣,于昕,张洪才.密集回波环境下多目标跟踪的一种新算法[J].西北工业大学学报,2004,22(3):388-391. 被引量:5
  • 2Efe M, Bonvin D.Data association in clutter with an adaptive filter[C].ISIF, 2002,1243 - 1248.
  • 3Waltz E, Llinas J. Multisensor data fusion[M]. Norwood, MA:Artech House, 1990.
  • 4Kirubarajan T, Bar-Shalom T, Pattipati K R. Multiassignmcnt for tracking a large number of overlapping objects[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001,37(1):2 - 20.
  • 5Blom H A P, Bloem E A. Probabilistic data association avoiding track coalescence. IEEE Trans. on Automatic Control, 2000, 45(2):247-259.
  • 6Pan Q, Zhang J P, Zhang H C. General probability data association with application to maneuvering multi-target tracking[C]. Proc.of the Asian Control Conference, Tokyo, 1994. 455- 458.

同被引文献63

  • 1向桂英,艾斯卡尔.艾木都拉,于伟俊,地里木拉提.吐尔逊.基于粒子滤波和数据关联的多目标跟踪算法[J].光电子.激光,2009,20(2):244-247. 被引量:9
  • 2徐国亮,邓雅娟.机动目标建模及机动检测算法[J].情报指挥控制系统与仿真技术,2005,27(4):81-83. 被引量:10
  • 3黄文杰,陈斌.一种快速图像处理的积分图方法[J].计算机应用,2005,25(B12):266-268. 被引量:13
  • 4程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 5李盛阳,张爱军,朱重光,唐家奎.基于网格的遥感图像快速处理[J].计算机工程,2007,33(6):35-37. 被引量:12
  • 6Magana M E,Holzapfel F.Fuzzy-logic control of ann inverted pendulum with vision feedback[J].IEEE Transactions on Education,1998,41(2):165-170.
  • 7Li H Y.Choreographing dynamical systems[D].Cambridge,USA:Harvard University,2004.
  • 8Petrovic I,Brezak M,Cupec R.Machine vision based oontrol of the ball and beam[C] //International Workshop on Advanced Motion Control.Piscataway,NJ,USA:IEEE,2002:573-577.
  • 9Won S H P,Golnaraghi F,Melek W.A fastening tool tracking system using an IMU and a position sensor with Kalman filters and a fuzzy expert system[J].IEEE Transactions on Industrial Electronics,2009,56(5):1782-1792.
  • 10Yun X P,Bachmann E.Design,implementation,and experimental results of a quaternion-based Kalman filter for human body motion tracking[J].IEEE Transactions on Robotics,2006,22(6):1216-1227.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部